forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Don't set type variables from register_schema(). `mypy` is not happy about it since type variables are calculated at runtime and hence the typing hints are not available during static analysis. Good news is there is no good reason to set the variables from the return type. Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com> Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
143 lines
5.2 KiB
Python
143 lines
5.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
|
|
|
|
from pydantic import BaseModel, Field
|
|
from typing_extensions import Annotated
|
|
|
|
from llama_stack.apis.agents import AgentConfig
|
|
from llama_stack.apis.common.job_types import Job, JobStatus
|
|
from llama_stack.apis.inference import SamplingParams, SystemMessage
|
|
from llama_stack.apis.scoring import ScoringResult
|
|
from llama_stack.apis.scoring_functions import ScoringFnParams
|
|
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
|
|
|
|
|
@json_schema_type
|
|
class ModelCandidate(BaseModel):
|
|
"""A model candidate for evaluation.
|
|
|
|
:param model: The model ID to evaluate.
|
|
:param sampling_params: The sampling parameters for the model.
|
|
:param system_message: (Optional) The system message providing instructions or context to the model.
|
|
"""
|
|
|
|
type: Literal["model"] = "model"
|
|
model: str
|
|
sampling_params: SamplingParams
|
|
system_message: Optional[SystemMessage] = None
|
|
|
|
|
|
@json_schema_type
|
|
class AgentCandidate(BaseModel):
|
|
"""An agent candidate for evaluation.
|
|
|
|
:param config: The configuration for the agent candidate.
|
|
"""
|
|
|
|
type: Literal["agent"] = "agent"
|
|
config: AgentConfig
|
|
|
|
|
|
EvalCandidate = Annotated[Union[ModelCandidate, AgentCandidate], Field(discriminator="type")]
|
|
register_schema(EvalCandidate, name="EvalCandidate")
|
|
|
|
|
|
@json_schema_type
|
|
class BenchmarkConfig(BaseModel):
|
|
"""A benchmark configuration for evaluation.
|
|
|
|
:param eval_candidate: The candidate to evaluate.
|
|
:param scoring_params: Map between scoring function id and parameters for each scoring function you want to run
|
|
:param num_examples: (Optional) The number of examples to evaluate. If not provided, all examples in the dataset will be evaluated
|
|
"""
|
|
|
|
eval_candidate: EvalCandidate
|
|
scoring_params: Dict[str, ScoringFnParams] = Field(
|
|
description="Map between scoring function id and parameters for each scoring function you want to run",
|
|
default_factory=dict,
|
|
)
|
|
num_examples: Optional[int] = Field(
|
|
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
|
|
default=None,
|
|
)
|
|
# we could optinally add any specific dataset config here
|
|
|
|
|
|
@json_schema_type
|
|
class EvaluateResponse(BaseModel):
|
|
"""The response from an evaluation.
|
|
|
|
:param generations: The generations from the evaluation.
|
|
:param scores: The scores from the evaluation.
|
|
"""
|
|
|
|
generations: List[Dict[str, Any]]
|
|
# each key in the dict is a scoring function name
|
|
scores: Dict[str, ScoringResult]
|
|
|
|
|
|
class Eval(Protocol):
|
|
"""Llama Stack Evaluation API for running evaluations on model and agent candidates."""
|
|
|
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST")
|
|
async def run_eval(
|
|
self,
|
|
benchmark_id: str,
|
|
benchmark_config: BenchmarkConfig,
|
|
) -> Job:
|
|
"""Run an evaluation on a benchmark.
|
|
|
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
|
:param benchmark_config: The configuration for the benchmark.
|
|
:return: The job that was created to run the evaluation.
|
|
"""
|
|
|
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/evaluations", method="POST")
|
|
async def evaluate_rows(
|
|
self,
|
|
benchmark_id: str,
|
|
input_rows: List[Dict[str, Any]],
|
|
scoring_functions: List[str],
|
|
benchmark_config: BenchmarkConfig,
|
|
) -> EvaluateResponse:
|
|
"""Evaluate a list of rows on a benchmark.
|
|
|
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
|
:param input_rows: The rows to evaluate.
|
|
:param scoring_functions: The scoring functions to use for the evaluation.
|
|
:param benchmark_config: The configuration for the benchmark.
|
|
:return: EvaluateResponse object containing generations and scores
|
|
"""
|
|
|
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET")
|
|
async def job_status(self, benchmark_id: str, job_id: str) -> JobStatus:
|
|
"""Get the status of a job.
|
|
|
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
|
:param job_id: The ID of the job to get the status of.
|
|
:return: The status of the evaluationjob.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="DELETE")
|
|
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
|
|
"""Cancel a job.
|
|
|
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
|
:param job_id: The ID of the job to cancel.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result", method="GET")
|
|
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse:
|
|
"""Get the result of a job.
|
|
|
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
|
:param job_id: The ID of the job to get the result of.
|
|
:return: The result of the job.
|
|
"""
|