forked from phoenix-oss/llama-stack-mirror
# What does this PR do? * Add a test fixture for tgi * Fixes the logic to correctly pass the llama model for chat completion Fixes #514 ## Test Plan pytest -k "tgi" llama_stack/providers/tests/inference/test_text_inference.py --env TGI_URL=http://localhost:$INFERENCE_PORT --env TGI_API_TOKEN=$HF_TOKEN
225 lines
6.4 KiB
Python
225 lines
6.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
|
|
import pytest
|
|
import pytest_asyncio
|
|
|
|
from llama_stack.apis.models import ModelInput
|
|
|
|
from llama_stack.distribution.datatypes import Api, Provider
|
|
from llama_stack.providers.inline.inference.meta_reference import (
|
|
MetaReferenceInferenceConfig,
|
|
)
|
|
from llama_stack.providers.remote.inference.bedrock import BedrockConfig
|
|
|
|
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
|
|
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
|
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
|
|
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
|
|
from llama_stack.providers.remote.inference.together import TogetherImplConfig
|
|
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
|
|
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
|
|
|
from ..conftest import ProviderFixture, remote_stack_fixture
|
|
from ..env import get_env_or_fail
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_model(request):
|
|
if hasattr(request, "param"):
|
|
return request.param
|
|
return request.config.getoption("--inference-model", None)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_remote() -> ProviderFixture:
|
|
return remote_stack_fixture()
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_meta_reference(inference_model) -> ProviderFixture:
|
|
inference_model = (
|
|
[inference_model] if isinstance(inference_model, str) else inference_model
|
|
)
|
|
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id=f"meta-reference-{i}",
|
|
provider_type="inline::meta-reference",
|
|
config=MetaReferenceInferenceConfig(
|
|
model=m,
|
|
max_seq_len=4096,
|
|
create_distributed_process_group=False,
|
|
checkpoint_dir=os.getenv("MODEL_CHECKPOINT_DIR", None),
|
|
).model_dump(),
|
|
)
|
|
for i, m in enumerate(inference_model)
|
|
]
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_ollama(inference_model) -> ProviderFixture:
|
|
inference_model = (
|
|
[inference_model] if isinstance(inference_model, str) else inference_model
|
|
)
|
|
if "Llama3.1-8B-Instruct" in inference_model:
|
|
pytest.skip("Ollama only supports Llama3.2-3B-Instruct for testing")
|
|
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="ollama",
|
|
provider_type="remote::ollama",
|
|
config=OllamaImplConfig(
|
|
host="localhost", port=os.getenv("OLLAMA_PORT", 11434)
|
|
).model_dump(),
|
|
)
|
|
],
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_vllm_remote() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="remote::vllm",
|
|
provider_type="remote::vllm",
|
|
config=VLLMInferenceAdapterConfig(
|
|
url=get_env_or_fail("VLLM_URL"),
|
|
).model_dump(),
|
|
)
|
|
],
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_fireworks() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="fireworks",
|
|
provider_type="remote::fireworks",
|
|
config=FireworksImplConfig(
|
|
api_key=get_env_or_fail("FIREWORKS_API_KEY"),
|
|
).model_dump(),
|
|
)
|
|
],
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_together() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="together",
|
|
provider_type="remote::together",
|
|
config=TogetherImplConfig().model_dump(),
|
|
)
|
|
],
|
|
provider_data=dict(
|
|
together_api_key=get_env_or_fail("TOGETHER_API_KEY"),
|
|
),
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_bedrock() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="bedrock",
|
|
provider_type="remote::bedrock",
|
|
config=BedrockConfig().model_dump(),
|
|
)
|
|
],
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_nvidia() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="nvidia",
|
|
provider_type="remote::nvidia",
|
|
config=NVIDIAConfig().model_dump(),
|
|
)
|
|
],
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_tgi() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="tgi",
|
|
provider_type="remote::tgi",
|
|
config=TGIImplConfig(
|
|
url=get_env_or_fail("TGI_URL"),
|
|
api_token=os.getenv("TGI_API_TOKEN", None),
|
|
).model_dump(),
|
|
)
|
|
],
|
|
)
|
|
|
|
|
|
def get_model_short_name(model_name: str) -> str:
|
|
"""Convert model name to a short test identifier.
|
|
|
|
Args:
|
|
model_name: Full model name like "Llama3.1-8B-Instruct"
|
|
|
|
Returns:
|
|
Short name like "llama_8b" suitable for test markers
|
|
"""
|
|
model_name = model_name.lower()
|
|
if "vision" in model_name:
|
|
return "llama_vision"
|
|
elif "3b" in model_name:
|
|
return "llama_3b"
|
|
elif "8b" in model_name:
|
|
return "llama_8b"
|
|
else:
|
|
return model_name.replace(".", "_").replace("-", "_")
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def model_id(inference_model) -> str:
|
|
return get_model_short_name(inference_model)
|
|
|
|
|
|
INFERENCE_FIXTURES = [
|
|
"meta_reference",
|
|
"ollama",
|
|
"fireworks",
|
|
"together",
|
|
"vllm_remote",
|
|
"remote",
|
|
"bedrock",
|
|
"nvidia",
|
|
"tgi",
|
|
]
|
|
|
|
|
|
@pytest_asyncio.fixture(scope="session")
|
|
async def inference_stack(request, inference_model):
|
|
fixture_name = request.param
|
|
inference_fixture = request.getfixturevalue(f"inference_{fixture_name}")
|
|
test_stack = await construct_stack_for_test(
|
|
[Api.inference],
|
|
{"inference": inference_fixture.providers},
|
|
inference_fixture.provider_data,
|
|
models=[ModelInput(model_id=inference_model)],
|
|
)
|
|
|
|
return test_stack.impls[Api.inference], test_stack.impls[Api.models]
|