llama-stack/llama_stack/providers/tests/inference/fixtures.py
Aidan Do e1f42eb5a5
[#432] Add Groq Provider - chat completions (#609)
# What does this PR do?

Contributes towards issue (#432)

- Groq text chat completions
- Streaming
- All the sampling params that Groq supports

A lot of inspiration taken from @mattf's good work at
https://github.com/meta-llama/llama-stack/pull/355

**What this PR does not do**

- Tool calls (Future PR)
- Adding llama-guard model
- See if we can add embeddings

### PR Train

- https://github.com/meta-llama/llama-stack/pull/609 👈 
- https://github.com/meta-llama/llama-stack/pull/630


## Test Plan

<details>

<summary>Environment</summary>

```bash
export GROQ_API_KEY=<api_key>

wget https://raw.githubusercontent.com/aidando73/llama-stack/240e6e2a9c20450ffdcfbabd800a6c0291f19288/build.yaml
wget https://raw.githubusercontent.com/aidando73/llama-stack/92c9b5297f9eda6a6e901e1adbd894e169dbb278/run.yaml

# Build and run environment
pip install -e . \
&& llama stack build --config ./build.yaml --image-type conda \
&& llama stack run ./run.yaml \
  --port 5001
```

</details>

<details>

<summary>Manual tests</summary>

Using this jupyter notebook to test manually:
2140976d76/hello.ipynb

Use this code to test passing in the api key from provider_data

```
from llama_stack_client import LlamaStackClient

client = LlamaStackClient(
    base_url="http://localhost:5001",
)

response = client.inference.chat_completion(
    model_id="Llama3.2-3B-Instruct",
    messages=[
        {"role": "user", "content": "Hello, world client!"},
    ],
    # Test passing in groq_api_key from the client
    # Need to comment out the groq_api_key in the run.yaml file
    x_llama_stack_provider_data='{"groq_api_key": "<api-key>"}',
    # stream=True,
)
response
```

</details>

<details>
<summary>Integration</summary>

`pytest llama_stack/providers/tests/inference/test_text_inference.py -v
-k groq`

(run in same environment)

```
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_3b-groq] PASSED                 [  6%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_3b-groq] SKIPPED (Other inf...) [ 12%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[llama_3b-groq] SKIPPED [ 18%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_3b-groq] PASSED [ 25%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_3b-groq] SKIPPED (Ot...) [ 31%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_3b-groq] PASSED  [ 37%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_3b-groq] SKIPPED [ 43%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_3b-groq] SKIPPED [ 50%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_8b-groq] PASSED                 [ 56%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_8b-groq] SKIPPED (Other inf...) [ 62%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[llama_8b-groq] SKIPPED [ 68%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_8b-groq] PASSED [ 75%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_8b-groq] SKIPPED (Ot...) [ 81%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_8b-groq] PASSED  [ 87%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_8b-groq] SKIPPED [ 93%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_8b-groq] SKIPPED [100%]

======================================= 6 passed, 10 skipped, 160 deselected, 7 warnings in 2.05s ========================================
```
</details>

<details>
<summary>Unit tests</summary>

`pytest llama_stack/providers/tests/inference/groq/ -v`

```
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_sets_model PASSED            [  5%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_user_message PASSED [ 10%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_system_message PASSED [ 15%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_completion_message PASSED [ 20%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_logprobs PASSED [ 25%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_response_format PASSED [ 30%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_repetition_penalty PASSED [ 35%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_stream PASSED       [ 40%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_n_is_1 PASSED                [ 45%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_if_max_tokens_is_0_then_it_is_not_included PASSED [ 50%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_max_tokens_if_set PASSED [ 55%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_temperature PASSED  [ 60%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_top_p PASSED        [ 65%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_returns_response PASSED [ 70%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_maps_stop_to_end_of_message PASSED [ 75%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_maps_length_to_end_of_message PASSED [ 80%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertStreamChatCompletionResponse::test_returns_stream PASSED [ 85%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqInit::test_raises_runtime_error_if_config_is_not_groq_config PASSED [ 90%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqInit::test_returns_groq_adapter PASSED                            [ 95%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqConfig::test_api_key_defaults_to_env_var PASSED                   [100%]

==================================================== 20 passed, 11 warnings in 0.08s =====================================================
```

</details>

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [x] Updated relevant documentation
- [x] Wrote necessary unit or integration tests.
2025-01-03 08:27:49 -08:00

289 lines
8.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import pytest
import pytest_asyncio
from llama_stack.apis.models import ModelInput, ModelType
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.inference.meta_reference import (
MetaReferenceInferenceConfig,
)
from llama_stack.providers.remote.inference.bedrock import BedrockConfig
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
from llama_stack.providers.remote.inference.groq import GroqConfig
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
from llama_stack.providers.remote.inference.together import TogetherImplConfig
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
from llama_stack.providers.tests.resolver import construct_stack_for_test
from ..conftest import ProviderFixture, remote_stack_fixture
from ..env import get_env_or_fail
@pytest.fixture(scope="session")
def inference_model(request):
if hasattr(request, "param"):
return request.param
return request.config.getoption("--inference-model", None)
@pytest.fixture(scope="session")
def inference_remote() -> ProviderFixture:
return remote_stack_fixture()
@pytest.fixture(scope="session")
def inference_meta_reference(inference_model) -> ProviderFixture:
inference_model = (
[inference_model] if isinstance(inference_model, str) else inference_model
)
# If embedding dimension is set, use the 8B model for testing
if os.getenv("EMBEDDING_DIMENSION"):
inference_model = ["meta-llama/Llama-3.1-8B-Instruct"]
return ProviderFixture(
providers=[
Provider(
provider_id=f"meta-reference-{i}",
provider_type="inline::meta-reference",
config=MetaReferenceInferenceConfig(
model=m,
max_seq_len=4096,
create_distributed_process_group=False,
checkpoint_dir=os.getenv("MODEL_CHECKPOINT_DIR", None),
).model_dump(),
)
for i, m in enumerate(inference_model)
]
)
@pytest.fixture(scope="session")
def inference_cerebras() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="cerebras",
provider_type="remote::cerebras",
config=CerebrasImplConfig(
api_key=get_env_or_fail("CEREBRAS_API_KEY"),
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_ollama(inference_model) -> ProviderFixture:
inference_model = (
[inference_model] if isinstance(inference_model, str) else inference_model
)
if inference_model and "Llama3.1-8B-Instruct" in inference_model:
pytest.skip("Ollama only supports Llama3.2-3B-Instruct for testing")
return ProviderFixture(
providers=[
Provider(
provider_id="ollama",
provider_type="remote::ollama",
config=OllamaImplConfig(
host="localhost", port=os.getenv("OLLAMA_PORT", 11434)
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_vllm_remote() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="remote::vllm",
provider_type="remote::vllm",
config=VLLMInferenceAdapterConfig(
url=get_env_or_fail("VLLM_URL"),
max_tokens=int(os.getenv("VLLM_MAX_TOKENS", 2048)),
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_fireworks() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="fireworks",
provider_type="remote::fireworks",
config=FireworksImplConfig(
api_key=get_env_or_fail("FIREWORKS_API_KEY"),
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_together() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="together",
provider_type="remote::together",
config=TogetherImplConfig().model_dump(),
)
],
provider_data=dict(
together_api_key=get_env_or_fail("TOGETHER_API_KEY"),
),
)
@pytest.fixture(scope="session")
def inference_groq() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="groq",
provider_type="remote::groq",
config=GroqConfig().model_dump(),
)
],
provider_data=dict(
groq_api_key=get_env_or_fail("GROQ_API_KEY"),
),
)
@pytest.fixture(scope="session")
def inference_bedrock() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="bedrock",
provider_type="remote::bedrock",
config=BedrockConfig().model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_nvidia() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="nvidia",
provider_type="remote::nvidia",
config=NVIDIAConfig().model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_tgi() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="tgi",
provider_type="remote::tgi",
config=TGIImplConfig(
url=get_env_or_fail("TGI_URL"),
api_token=os.getenv("TGI_API_TOKEN", None),
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_sentence_transformers() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="sentence_transformers",
provider_type="inline::sentence-transformers",
config={},
)
]
)
def get_model_short_name(model_name: str) -> str:
"""Convert model name to a short test identifier.
Args:
model_name: Full model name like "Llama3.1-8B-Instruct"
Returns:
Short name like "llama_8b" suitable for test markers
"""
model_name = model_name.lower()
if "vision" in model_name:
return "llama_vision"
elif "3b" in model_name:
return "llama_3b"
elif "8b" in model_name:
return "llama_8b"
else:
return model_name.replace(".", "_").replace("-", "_")
@pytest.fixture(scope="session")
def model_id(inference_model) -> str:
return get_model_short_name(inference_model)
INFERENCE_FIXTURES = [
"meta_reference",
"ollama",
"fireworks",
"together",
"groq",
"vllm_remote",
"remote",
"bedrock",
"cerebras",
"nvidia",
"tgi",
]
@pytest_asyncio.fixture(scope="session")
async def inference_stack(request, inference_model):
fixture_name = request.param
inference_fixture = request.getfixturevalue(f"inference_{fixture_name}")
model_type = ModelType.llm
metadata = {}
if os.getenv("EMBEDDING_DIMENSION"):
model_type = ModelType.embedding
metadata["embedding_dimension"] = get_env_or_fail("EMBEDDING_DIMENSION")
test_stack = await construct_stack_for_test(
[Api.inference],
{"inference": inference_fixture.providers},
inference_fixture.provider_data,
models=[
ModelInput(
model_id=inference_model,
model_type=model_type,
metadata=metadata,
)
],
)
return test_stack.impls[Api.inference], test_stack.impls[Api.models]