Composable building blocks to build Llama Apps
Find a file
grs e3ad17ec5e
feat: enable mutual tls (#2140)
# What does this PR do?
This adds a config option for a CA to be specified with which client
certs are verified. If specified client certs are required. This offers
a simple way of securing access to the server.

(Note: at present it is not possible to access the details of the client
certificate using uvicorn (unless it was monkey patched). Though there
is a defined TLS extension for ASGI, this is not implemented in uvicorn
pending a review and likely change to the specification. See
https://github.com/encode/uvicorn/pull/1119 and
https://github.com/django/asgiref/issues/466. Without access to the DN
it isn't possible to set user access attributes for a mutually
authentication tls connection, so more fine grained access control is
not yet possible).

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
Used proposed config option to specify a CA and verified that the server
can only be accessed with a valid client certificate.

[//]: # (## Documentation)

Signed-off-by: Gordon Sim <gsim@redhat.com>
2025-05-12 14:08:36 -07:00
.github chore(refact)!: simplify config management (#1105) 2025-05-07 09:18:12 -07:00
docs fix: Adding Embedding model to watsonx inference (#2118) 2025-05-12 10:58:22 -07:00
llama_stack feat: enable mutual tls (#2140) 2025-05-12 14:08:36 -07:00
rfcs chore: remove straggler references to llama-models (#1345) 2025-03-01 14:26:03 -08:00
scripts chore: enable pyupgrade fixes (#1806) 2025-05-01 14:23:50 -07:00
tests chore: remove last instances of code-interpreter provider (#2143) 2025-05-12 10:54:43 -07:00
.coveragerc chore: exclude test, provider, and template directories from coverage (#2028) 2025-04-25 12:16:57 -07:00
.gitignore build: remove .python-version (#1513) 2025-03-12 20:08:24 -07:00
.pre-commit-config.yaml feat(pre-commit): enhance pre-commit hooks with additional checks (#2014) 2025-04-30 11:35:49 -07:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CHANGELOG.md docs: Update changelog to include recent releases (#2108) 2025-05-06 14:42:06 -07:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md test: Document how users can run a subset of tests (#2066) 2025-05-07 14:05:36 +02:00
install.sh fix(installer): harden install.sh for Podman macOS (#2068) 2025-05-05 00:31:58 -07:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in feat: introduce llama4 support (#1877) 2025-04-05 11:53:35 -07:00
pyproject.toml build: Bump version to 0.2.6 2025-05-12 18:02:05 +00:00
README.md docs: Add link to Discord to README (#2126) 2025-05-10 18:32:44 -07:00
requirements.txt chore: rehydrate requirements.txt (#2146) 2025-05-12 12:45:35 -07:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock build: Bump version to 0.2.6 2025-05-12 18:02:05 +00:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook | Discord

🎉 Llama 4 Support 🎉

We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.

👋 Click here to see how to run Llama 4 models on Llama Stack


Note you need 8xH100 GPU-host to run these models

pip install -U llama_stack

MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>

# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu

# install client to interact with the server
pip install llama-stack-client

CLI

# Run a chat completion
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"

ChatCompletionResponse(
    completion_message=CompletionMessage(content="Whispers in code born\nLlama's gentle, wise heartbeat\nFuture's soft unfold", role='assistant', stop_reason='end_of_turn', tool_calls=[]),
    logprobs=None,
    metrics=[Metric(metric='prompt_tokens', value=21.0, unit=None), Metric(metric='completion_tokens', value=28.0, unit=None), Metric(metric='total_tokens', value=49.0, unit=None)]
)

Python SDK

from llama_stack_client import LlamaStackClient

client = LlamaStackClient(base_url=f"http://localhost:8321")

model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"

print(f"User> {prompt}")
response = client.inference.chat_completion(
    model_id=model_id,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt},
    ],
)
print(f"Assistant> {response.completion_message.content}")

As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!

🚀 One-Line Installer 🚀

To try Llama Stack locally, run:

curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/install.sh | sh

Overview

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted
watsonx Hosted

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.