llama-stack/llama_stack/providers/remote/inference/ollama/ollama.py
Sixian Yi e41873f268
[ez] structured output for /completion ollama & enable tests (#822)
# What does this PR do?

1) enabled structured output for ollama /completion API. It seems we
missed this one.
2) fixed ollama structured output test in client sdk - ollama does not
support list format for structured output
3) enable structured output unit test as the result was stable on
Llama-3.1-8B-Instruct and ollama, fireworks, together.


## Test Plan
1) Run `test_completion_structured_output` on /completion API with 3
providers: ollama, fireworks, together.
pytest -v -s -k "together"
--inference-model="meta-llama/Llama-3.1-8B-Instruct"
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output


```
(base) sxyi@sxyi-mbp llama-stack % pytest -s -v llama_stack/providers/tests/inference --config=ci_test_config.yaml
/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/pytest_asyncio/plugin.py:208: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
================================================================================================ test session starts =================================================================================================
platform darwin -- Python 3.13.0, pytest-8.3.4, pluggy-1.5.0 -- /Library/Frameworks/Python.framework/Versions/3.13/bin/python3.13
cachedir: .pytest_cache
metadata: {'Python': '3.13.0', 'Platform': 'macOS-15.1.1-arm64-arm-64bit-Mach-O', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'asyncio': '0.24.0', 'html': '4.1.1', 'metadata': '3.1.1', 'md': '0.2.0', 'dependency': '0.6.0', 'md-report': '0.6.3', 'anyio': '4.6.2.post1'}}
rootdir: /Users/sxyi/llama-stack
configfile: pyproject.toml
plugins: asyncio-0.24.0, html-4.1.1, metadata-3.1.1, md-0.2.0, dependency-0.6.0, md-report-0.6.3, anyio-4.6.2.post1
asyncio: mode=Mode.STRICT, default_loop_scope=None
collected 85 items / 82 deselected / 3 selected                                                                                                                                                                      

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct-ollama] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct-fireworks]
PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct-together] PASSED

==================================================================================== 3 passed, 82 deselected, 8 warnings in 5.67s ====================================================================================
```
2)  
` LLAMA_STACK_CONFIG="./llama_stack/templates/ollama/run.yaml"
/opt/miniconda3/envs/stack/bin/pytest -s -v tests/client-sdk/inference`

Before: 
```
________________________________________________________________________________________ test_completion_structured_output __________________________________________________________________________________________
tests/client-sdk/inference/test_inference.py:174: in test_completion_structured_output
    answer = AnswerFormat.model_validate_json(response.content)
E   pydantic_core._pydantic_core.ValidationError: 1 validation error for AnswerFormat
E     Invalid JSON: expected value at line 1 column 2 [type=json_invalid, input_value=' The year he retired, he...5\n\nThe best answer is', input_type=str]
E       For further information visit https://errors.pydantic.dev/2.10/v/json_invalid
```

After: 
test consistently passes


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-21 21:10:24 -08:00

415 lines
14 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
from typing import AsyncGenerator, List, Optional, Union
import httpx
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from ollama import AsyncClient
from llama_stack.apis.common.content_types import (
ImageContentItem,
InterleavedContent,
TextContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
build_model_alias_with_just_provider_model_id,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_image_content_to_url,
interleaved_content_as_str,
request_has_media,
)
log = logging.getLogger(__name__)
model_aliases = [
build_model_alias(
"llama3.1:8b-instruct-fp16",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama3.1:8b",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"llama3.1:70b-instruct-fp16",
CoreModelId.llama3_1_70b_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama3.1:70b",
CoreModelId.llama3_1_70b_instruct.value,
),
build_model_alias(
"llama3.1:405b-instruct-fp16",
CoreModelId.llama3_1_405b_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama3.1:405b",
CoreModelId.llama3_1_405b_instruct.value,
),
build_model_alias(
"llama3.2:1b-instruct-fp16",
CoreModelId.llama3_2_1b_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama3.2:1b",
CoreModelId.llama3_2_1b_instruct.value,
),
build_model_alias(
"llama3.2:3b-instruct-fp16",
CoreModelId.llama3_2_3b_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama3.2:3b",
CoreModelId.llama3_2_3b_instruct.value,
),
build_model_alias(
"llama3.2-vision:11b-instruct-fp16",
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama3.2-vision:latest",
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_model_alias(
"llama3.2-vision:90b-instruct-fp16",
CoreModelId.llama3_2_90b_vision_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama3.2-vision:90b",
CoreModelId.llama3_2_90b_vision_instruct.value,
),
build_model_alias(
"llama3.3:70b",
CoreModelId.llama3_3_70b_instruct.value,
),
# The Llama Guard models don't have their full fp16 versions
# so we are going to alias their default version to the canonical SKU
build_model_alias(
"llama-guard3:8b",
CoreModelId.llama_guard_3_8b.value,
),
build_model_alias(
"llama-guard3:1b",
CoreModelId.llama_guard_3_1b.value,
),
]
class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
def __init__(self, url: str) -> None:
self.register_helper = ModelRegistryHelper(model_aliases)
self.url = url
self.formatter = ChatFormat(Tokenizer.get_instance())
@property
def client(self) -> AsyncClient:
return AsyncClient(host=self.url)
async def initialize(self) -> None:
log.info(f"checking connectivity to Ollama at `{self.url}`...")
try:
await self.client.ps()
except httpx.ConnectError as e:
raise RuntimeError(
"Ollama Server is not running, start it using `ollama serve` in a separate terminal"
) from e
async def shutdown(self) -> None:
pass
async def unregister_model(self, model_id: str) -> None:
pass
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.generate(**params)
async for chunk in s:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["response"],
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_completion_stream_response(stream, self.formatter):
yield chunk
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
r = await self.client.generate(**params)
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["response"],
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_completion_response(response, self.formatter)
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
response_format=response_format,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def _get_params(
self, request: Union[ChatCompletionRequest, CompletionRequest]
) -> dict:
sampling_options = get_sampling_options(request.sampling_params)
# This is needed since the Ollama API expects num_predict to be set
# for early truncation instead of max_tokens.
if sampling_options.get("max_tokens") is not None:
sampling_options["num_predict"] = sampling_options["max_tokens"]
input_dict = {}
media_present = request_has_media(request)
if isinstance(request, ChatCompletionRequest):
if media_present:
contents = [
await convert_message_to_openai_dict_for_ollama(m)
for m in request.messages
]
# flatten the list of lists
input_dict["messages"] = [
item for sublist in contents for item in sublist
]
else:
input_dict["raw"] = True
input_dict["prompt"] = await chat_completion_request_to_prompt(
request,
self.register_helper.get_llama_model(request.model),
self.formatter,
)
else:
assert (
not media_present
), "Ollama does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(
request, self.formatter
)
input_dict["raw"] = True
if fmt := request.response_format:
if fmt.type == "json_schema":
input_dict["format"] = fmt.json_schema
elif fmt.type == "grammar":
raise NotImplementedError("Grammar response format is not supported")
else:
raise ValueError(f"Unknown response format type: {fmt.type}")
return {
"model": request.model,
**input_dict,
"options": sampling_options,
"stream": request.stream,
}
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest
) -> ChatCompletionResponse:
params = await self._get_params(request)
if "messages" in params:
r = await self.client.chat(**params)
else:
r = await self.client.generate(**params)
if "message" in r:
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["message"]["content"],
)
else:
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["response"],
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_chat_completion_response(response, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncGenerator:
params = await self._get_params(request)
async def _generate_and_convert_to_openai_compat():
if "messages" in params:
s = await self.client.chat(**params)
else:
s = await self.client.generate(**params)
async for chunk in s:
if "message" in chunk:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["message"]["content"],
)
else:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["response"],
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(
stream, self.formatter
):
yield chunk
async def embeddings(
self,
model_id: str,
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
assert all(
not content_has_media(content) for content in contents
), "Ollama does not support media for embeddings"
response = await self.client.embed(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
)
embeddings = response["embeddings"]
return EmbeddingsResponse(embeddings=embeddings)
async def register_model(self, model: Model) -> Model:
# ollama does not have embedding models running. Check if the model is in list of available models.
if model.model_type == ModelType.embedding:
response = await self.client.list()
available_models = [m["model"] for m in response["models"]]
if model.provider_resource_id not in available_models:
raise ValueError(
f"Model '{model.provider_resource_id}' is not available in Ollama. "
f"Available models: {', '.join(available_models)}"
)
return model
model = await self.register_helper.register_model(model)
models = await self.client.ps()
available_models = [m["model"] for m in models["models"]]
if model.provider_resource_id not in available_models:
raise ValueError(
f"Model '{model.provider_resource_id}' is not available in Ollama. "
f"Available models: {', '.join(available_models)}"
)
return model
async def convert_message_to_openai_dict_for_ollama(message: Message) -> List[dict]:
async def _convert_content(content) -> dict:
if isinstance(content, ImageContentItem):
return {
"role": message.role,
"images": [
await convert_image_content_to_url(
content, download=True, include_format=False
)
],
}
else:
text = content.text if isinstance(content, TextContentItem) else content
assert isinstance(text, str)
return {
"role": message.role,
"content": text,
}
if isinstance(message.content, list):
return [await _convert_content(c) for c in message.content]
else:
return [await _convert_content(message.content)]