forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - Configured ruff linter to automatically fix import sorting issues. - Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are applied. - Enabled the 'I' selection to focus on import-related linting rules. - Ran the linter, and formatted all codebase imports accordingly. - Removed the black dep from the "dev" group since we use ruff Signed-off-by: Sébastien Han <seb@redhat.com> [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan [Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*] [//]: # (## Documentation) [//]: # (- [ ] Added a Changelog entry if the change is significant) Signed-off-by: Sébastien Han <seb@redhat.com>
299 lines
11 KiB
Python
299 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator, List, Optional, Union
|
|
|
|
from fireworks.client import Fireworks
|
|
from llama_models.datatypes import CoreModelId
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
EmbeddingsResponse,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
ResponseFormatType,
|
|
SamplingParams,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
build_model_alias,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
convert_message_to_openai_dict,
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
content_has_media,
|
|
interleaved_content_as_str,
|
|
request_has_media,
|
|
)
|
|
|
|
from .config import FireworksImplConfig
|
|
|
|
MODEL_ALIASES = [
|
|
build_model_alias(
|
|
"accounts/fireworks/models/llama-v3p1-8b-instruct",
|
|
CoreModelId.llama3_1_8b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"accounts/fireworks/models/llama-v3p1-70b-instruct",
|
|
CoreModelId.llama3_1_70b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"accounts/fireworks/models/llama-v3p1-405b-instruct",
|
|
CoreModelId.llama3_1_405b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"accounts/fireworks/models/llama-v3p2-1b-instruct",
|
|
CoreModelId.llama3_2_1b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"accounts/fireworks/models/llama-v3p2-3b-instruct",
|
|
CoreModelId.llama3_2_3b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct",
|
|
CoreModelId.llama3_2_11b_vision_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct",
|
|
CoreModelId.llama3_2_90b_vision_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"accounts/fireworks/models/llama-v3p3-70b-instruct",
|
|
CoreModelId.llama3_3_70b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"accounts/fireworks/models/llama-guard-3-8b",
|
|
CoreModelId.llama_guard_3_8b.value,
|
|
),
|
|
build_model_alias(
|
|
"accounts/fireworks/models/llama-guard-3-11b-vision",
|
|
CoreModelId.llama_guard_3_11b_vision.value,
|
|
),
|
|
]
|
|
|
|
|
|
class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
|
def __init__(self, config: FireworksImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
|
|
self.config = config
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
def _get_api_key(self) -> str:
|
|
if self.config.api_key is not None:
|
|
return self.config.api_key.get_secret_value()
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.fireworks_api_key:
|
|
raise ValueError(
|
|
'Pass Fireworks API Key in the header X-LlamaStack-Provider-Data as { "fireworks_api_key": <your api key>}'
|
|
)
|
|
return provider_data.fireworks_api_key
|
|
|
|
def _get_client(self) -> Fireworks:
|
|
fireworks_api_key = self._get_api_key()
|
|
return Fireworks(api_key=fireworks_api_key)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
|
params = await self._get_params(request)
|
|
r = await self._get_client().completion.acreate(**params)
|
|
return process_completion_response(r, self.formatter)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
# Wrapper for async generator similar
|
|
async def _to_async_generator():
|
|
stream = self._get_client().completion.create(**params)
|
|
for chunk in stream:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
|
yield chunk
|
|
|
|
def _build_options(
|
|
self,
|
|
sampling_params: Optional[SamplingParams],
|
|
fmt: ResponseFormat,
|
|
logprobs: Optional[LogProbConfig],
|
|
) -> dict:
|
|
options = get_sampling_options(sampling_params)
|
|
options.setdefault("max_tokens", 512)
|
|
|
|
if fmt:
|
|
if fmt.type == ResponseFormatType.json_schema.value:
|
|
options["response_format"] = {
|
|
"type": "json_object",
|
|
"schema": fmt.json_schema,
|
|
}
|
|
elif fmt.type == ResponseFormatType.grammar.value:
|
|
options["response_format"] = {
|
|
"type": "grammar",
|
|
"grammar": fmt.bnf,
|
|
}
|
|
else:
|
|
raise ValueError(f"Unknown response format {fmt.type}")
|
|
|
|
if logprobs and logprobs.top_k:
|
|
options["logprobs"] = logprobs.top_k
|
|
if options["logprobs"] <= 0 or options["logprobs"] >= 5:
|
|
raise ValueError("Required range: 0 < top_k < 5")
|
|
|
|
return options
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
if "messages" in params:
|
|
r = await self._get_client().chat.completions.acreate(**params)
|
|
else:
|
|
r = await self._get_client().completion.acreate(**params)
|
|
return process_chat_completion_response(r, self.formatter, request)
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
async def _to_async_generator():
|
|
if "messages" in params:
|
|
stream = self._get_client().chat.completions.acreate(**params)
|
|
else:
|
|
stream = self._get_client().completion.acreate(**params)
|
|
async for chunk in stream:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_chat_completion_stream_response(stream, self.formatter, request):
|
|
yield chunk
|
|
|
|
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
|
input_dict = {}
|
|
media_present = request_has_media(request)
|
|
|
|
if isinstance(request, ChatCompletionRequest):
|
|
if media_present:
|
|
input_dict["messages"] = [
|
|
await convert_message_to_openai_dict(m, download=True) for m in request.messages
|
|
]
|
|
else:
|
|
input_dict["prompt"] = await chat_completion_request_to_prompt(
|
|
request, self.get_llama_model(request.model), self.formatter
|
|
)
|
|
else:
|
|
assert not media_present, "Fireworks does not support media for Completion requests"
|
|
input_dict["prompt"] = await completion_request_to_prompt(request, self.formatter)
|
|
|
|
# Fireworks always prepends with BOS
|
|
if "prompt" in input_dict:
|
|
if input_dict["prompt"].startswith("<|begin_of_text|>"):
|
|
input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :]
|
|
|
|
return {
|
|
"model": request.model,
|
|
**input_dict,
|
|
"stream": request.stream,
|
|
**self._build_options(request.sampling_params, request.response_format, request.logprobs),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
) -> EmbeddingsResponse:
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
kwargs = {}
|
|
if model.metadata.get("embedding_dimensions"):
|
|
kwargs["dimensions"] = model.metadata.get("embedding_dimensions")
|
|
assert all(not content_has_media(content) for content in contents), (
|
|
"Fireworks does not support media for embeddings"
|
|
)
|
|
response = self._get_client().embeddings.create(
|
|
model=model.provider_resource_id,
|
|
input=[interleaved_content_as_str(content) for content in contents],
|
|
**kwargs,
|
|
)
|
|
|
|
embeddings = [data.embedding for data in response.data]
|
|
return EmbeddingsResponse(embeddings=embeddings)
|