forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Implemetation of NeMO Datastore register, unregister API. Open Issues: - provider_id gets set to `localfs` in client.datasets.register() as it is specified in routing_tables.py: DatasetsRoutingTable see: #1860 Currently I have passed `"provider_id":"nvidia"` in metadata and have parsed that in `DatasetsRoutingTable` (Not the best approach, but just a quick workaround to make it work for now.) ## Test Plan - Unit test cases: `pytest tests/unit/providers/nvidia/test_datastore.py` ```bash ========================================================== test session starts =========================================================== platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0 rootdir: /home/ubuntu/llama-stack configfile: pyproject.toml plugins: anyio-4.9.0, asyncio-0.26.0, nbval-0.11.0, metadata-3.1.1, html-4.1.1, cov-6.1.0 asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function collected 2 items tests/unit/providers/nvidia/test_datastore.py .. [100%] ============================================================ warnings summary ============================================================ ====================================================== 2 passed, 1 warning in 0.84s ====================================================== ``` cc: @dglogo, @mattf, @yanxi0830 |
||
---|---|---|
.. | ||
_static | ||
notebooks | ||
openapi_generator | ||
resources | ||
source | ||
zero_to_hero_guide | ||
conftest.py | ||
contbuild.sh | ||
dog.jpg | ||
getting_started.ipynb | ||
getting_started_llama4.ipynb | ||
license_header.txt | ||
make.bat | ||
Makefile | ||
readme.md | ||
requirements.txt |
Llama Stack Documentation
Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.
Render locally
pip install -r requirements.txt
cd docs
python -m sphinx_autobuild source _build
You can open up the docs in your browser at http://localhost:8000
Content
Try out Llama Stack's capabilities through our detailed Jupyter notebooks:
- Building AI Applications Notebook - A comprehensive guide to building production-ready AI applications using Llama Stack
- Benchmark Evaluations Notebook - Detailed performance evaluations and benchmarking results
- Zero-to-Hero Guide - Step-by-step guide for getting started with Llama Stack