forked from phoenix-oss/llama-stack-mirror
* Add distribution CLI scaffolding * More progress towards `llama distribution install` * getting closer to a distro definition, distro install + configure works * Distribution server now functioning * read existing configuration, save enums properly * Remove inference uvicorn server entrypoint and llama inference CLI command * updated dependency and client model name * Improved exception handling * local imports for faster cli * undo a typo, add a passthrough distribution * implement full-passthrough in the server * add safety adapters, configuration handling, server + clients * cleanup, moving stuff to common, nuke utils * Add a Path() wrapper at the earliest place * fixes * Bring agentic system api to toolchain Add adapter dependencies and resolve adapters using a topological sort * refactor to reduce size of `agentic_system` * move straggler files and fix some important existing bugs * ApiSurface -> Api * refactor a method out * Adapter -> Provider * Make each inference provider into its own subdirectory * installation fixes * Rename Distribution -> DistributionSpec, simplify RemoteProviders * dict key instead of attr * update inference config to take model and not model_dir * Fix passthrough streaming, send headers properly not part of body :facepalm * update safety to use model sku ids and not model dirs * Update cli_reference.md * minor fixes * add DistributionConfig, fix a bug in model download * Make install + start scripts do proper configuration automatically * Update CLI_reference * Nuke fp8_requirements, fold fbgemm into common requirements * Update README, add newline between API surface configurations * Refactor download functionality out of the Command so can be reused * Add `llama model download` alias for `llama download` * Show message about checksum file so users can check themselves * Simpler intro statements * get ollama working * Reduce a bunch of dependencies from toolchain Some improvements to the distribution install script * Avoid using `conda run` since it buffers everything * update dependencies and rely on LLAMA_TOOLCHAIN_DIR for dev purposes * add validation for configuration input * resort imports * make optional subclasses default to yes for configuration * Remove additional_pip_packages; move deps to providers * for inline make 8b model the default * Add scripts to MANIFEST * allow installing from test.pypi.org * Fix #2 to help with testing packages * Must install llama-models at that same version first * fix PIP_ARGS --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Hardik Shah <hjshah@meta.com>
152 lines
4.6 KiB
Python
152 lines
4.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import json
|
|
from datetime import datetime
|
|
from typing import List
|
|
|
|
from llama_toolchain.inference.api import (
|
|
BuiltinTool,
|
|
Message,
|
|
SystemMessage,
|
|
ToolDefinition,
|
|
)
|
|
|
|
from .tools.builtin import SingleMessageBuiltinTool
|
|
|
|
|
|
def get_agentic_prefix_messages(
|
|
builtin_tools: List[SingleMessageBuiltinTool], custom_tools: List[ToolDefinition]
|
|
) -> List[Message]:
|
|
messages = []
|
|
content = ""
|
|
if builtin_tools:
|
|
content += "Environment: ipython\n"
|
|
|
|
tool_str = ", ".join(
|
|
[
|
|
t.get_name()
|
|
for t in builtin_tools
|
|
if t.get_name() != BuiltinTool.code_interpreter.value
|
|
]
|
|
)
|
|
if tool_str:
|
|
content += f"Tools: {tool_str}\n"
|
|
|
|
current_date = datetime.now()
|
|
formatted_date = current_date.strftime("%d %B %Y")
|
|
date_str = f"""
|
|
Cutting Knowledge Date: December 2023
|
|
Today Date: {formatted_date}\n\n"""
|
|
content += date_str
|
|
|
|
if custom_tools:
|
|
custom_message = get_system_prompt_for_custom_tools(custom_tools)
|
|
content += custom_message
|
|
|
|
# TODO: Replace this hard coded message with instructions coming in the request
|
|
if False:
|
|
content += "You are a helpful Assistant."
|
|
|
|
messages.append(SystemMessage(content=content))
|
|
return messages
|
|
|
|
|
|
def get_system_prompt_for_custom_tools(custom_tools: List[ToolDefinition]) -> str:
|
|
custom_tool_params = ""
|
|
for t in custom_tools:
|
|
custom_tool_params += get_instruction_string(t) + "\n"
|
|
custom_tool_params += get_parameters_string(t) + "\n\n"
|
|
|
|
content = f"""
|
|
You have access to the following functions:
|
|
|
|
{custom_tool_params}
|
|
Think very carefully before calling functions.
|
|
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
|
|
|
|
<function=example_function_name>{{"example_name": "example_value"}}</function>
|
|
|
|
Reminder:
|
|
- If looking for real time information use relevant functions before falling back to brave_search
|
|
- Function calls MUST follow the specified format, start with <function= and end with </function>
|
|
- Required parameters MUST be specified
|
|
- Only call one function at a time
|
|
- Put the entire function call reply on one line
|
|
|
|
"""
|
|
return content
|
|
|
|
|
|
def get_instruction_string(custom_tool_definition) -> str:
|
|
return f"Use the function '{custom_tool_definition.tool_name}' to '{custom_tool_definition.description}'"
|
|
|
|
|
|
def get_parameters_string(custom_tool_definition) -> str:
|
|
return json.dumps(
|
|
{
|
|
"name": custom_tool_definition.tool_name,
|
|
"description": custom_tool_definition.description,
|
|
"parameters": {
|
|
name: definition.__dict__
|
|
for name, definition in custom_tool_definition.parameters.items()
|
|
},
|
|
}
|
|
)
|
|
|
|
|
|
# NOTE: Unused right now
|
|
def translate_custom_tool_definition_to_json(tool_def):
|
|
"""Translates ToolDefinition to json as expected by model
|
|
eg. output for a function
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "conv_int",
|
|
"description": "Convert serialized fract24 integer into int value.",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": [
|
|
{
|
|
"data": {
|
|
"type": "object",
|
|
"description": ""
|
|
}
|
|
}
|
|
],
|
|
"required": ["data"]
|
|
}
|
|
}
|
|
}
|
|
"""
|
|
assert isinstance(tool_def.tool_name, str)
|
|
func_def = {"type": "function", "function": {}}
|
|
func_def["function"]["name"] = tool_def.tool_name
|
|
func_def["function"]["description"] = tool_def.description or ""
|
|
if tool_def.parameters:
|
|
required = []
|
|
properties = []
|
|
for p_name, p_def in tool_def.parameters.items():
|
|
properties.append(
|
|
{
|
|
p_name: {
|
|
# TODO: see if this should not always be object
|
|
"type": "object",
|
|
"description": p_def.description or "",
|
|
}
|
|
}
|
|
)
|
|
if p_def.required:
|
|
required.append(p_name)
|
|
func_def["function"]["parameters"] = {
|
|
"type": "object",
|
|
"properties": properties,
|
|
"required": required,
|
|
}
|
|
else:
|
|
func_def["function"]["parameters"] = {}
|
|
|
|
return json.dumps(func_def)
|