llama-stack/llama_toolchain/cli/model/describe.py
Ashwin Bharambe e830814399
Introduce Llama stack distributions (#22)
* Add distribution CLI scaffolding

* More progress towards `llama distribution install`

* getting closer to a distro definition, distro install + configure works

* Distribution server now functioning

* read existing configuration, save enums properly

* Remove inference uvicorn server entrypoint and llama inference CLI command

* updated dependency and client model name

* Improved exception handling

* local imports for faster cli

* undo a typo, add a passthrough distribution

* implement full-passthrough in the server

* add safety adapters, configuration handling, server + clients

* cleanup, moving stuff to common, nuke utils

* Add a Path() wrapper at the earliest place

* fixes

* Bring agentic system api to toolchain

Add adapter dependencies and resolve adapters using a topological sort

* refactor to reduce size of `agentic_system`

* move straggler files and fix some important existing bugs

* ApiSurface -> Api

* refactor a method out

* Adapter -> Provider

* Make each inference provider into its own subdirectory

* installation fixes

* Rename Distribution -> DistributionSpec, simplify RemoteProviders

* dict key instead of attr

* update inference config to take model and not model_dir

* Fix passthrough streaming, send headers properly not part of body :facepalm

* update safety to use model sku ids and not model dirs

* Update cli_reference.md

* minor fixes

* add DistributionConfig, fix a bug in model download

* Make install + start scripts do proper configuration automatically

* Update CLI_reference

* Nuke fp8_requirements, fold fbgemm into common requirements

* Update README, add newline between API surface configurations

* Refactor download functionality out of the Command so can be reused

* Add `llama model download` alias for `llama download`

* Show message about checksum file so users can check themselves

* Simpler intro statements

* get ollama working

* Reduce a bunch of dependencies from toolchain

Some improvements to the distribution install script

* Avoid using `conda run` since it buffers everything

* update dependencies and rely on LLAMA_TOOLCHAIN_DIR for dev purposes

* add validation for configuration input

* resort imports

* make optional subclasses default to yes for configuration

* Remove additional_pip_packages; move deps to providers

* for inline make 8b model the default

* Add scripts to MANIFEST

* allow installing from test.pypi.org

* Fix #2 to help with testing packages

* Must install llama-models at that same version first

* fix PIP_ARGS

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Hardik Shah <hjshah@meta.com>
2024-08-08 13:38:41 -07:00

75 lines
2.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import json
from llama_models.sku_list import resolve_model
from termcolor import colored
from llama_toolchain.cli.subcommand import Subcommand
from llama_toolchain.cli.table import print_table
from llama_toolchain.common.serialize import EnumEncoder
class ModelDescribe(Subcommand):
"""Show details about a model"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"describe",
prog="llama model describe",
description="Show details about a llama model",
formatter_class=argparse.RawTextHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._run_model_describe_cmd)
def _add_arguments(self):
self.parser.add_argument(
"-m",
"--model-id",
type=str,
required=True,
)
def _run_model_describe_cmd(self, args: argparse.Namespace) -> None:
model = resolve_model(args.model_id)
if model is None:
self.parser.error(
f"Model {args.model_id} not found; try 'llama model list' for a list of available models."
)
return
rows = [
(
colored("Model", "white", attrs=["bold"]),
colored(model.descriptor(), "white", attrs=["bold"]),
),
("HuggingFace ID", model.huggingface_repo or "<Not Available>"),
("Description", model.description_markdown),
("Context Length", f"{model.max_seq_length // 1024}K tokens"),
("Weights format", model.quantization_format.value),
("Model params.json", json.dumps(model.model_args, indent=4)),
]
if model.recommended_sampling_params is not None:
sampling_params = model.recommended_sampling_params.dict()
for k in ("max_tokens", "repetition_penalty"):
del sampling_params[k]
rows.append(
(
"Recommended sampling params",
json.dumps(sampling_params, cls=EnumEncoder, indent=4),
)
)
print_table(
rows,
separate_rows=True,
)