llama-stack/tests/test_ollama_inference.py
Ashwin Bharambe e830814399
Introduce Llama stack distributions (#22)
* Add distribution CLI scaffolding

* More progress towards `llama distribution install`

* getting closer to a distro definition, distro install + configure works

* Distribution server now functioning

* read existing configuration, save enums properly

* Remove inference uvicorn server entrypoint and llama inference CLI command

* updated dependency and client model name

* Improved exception handling

* local imports for faster cli

* undo a typo, add a passthrough distribution

* implement full-passthrough in the server

* add safety adapters, configuration handling, server + clients

* cleanup, moving stuff to common, nuke utils

* Add a Path() wrapper at the earliest place

* fixes

* Bring agentic system api to toolchain

Add adapter dependencies and resolve adapters using a topological sort

* refactor to reduce size of `agentic_system`

* move straggler files and fix some important existing bugs

* ApiSurface -> Api

* refactor a method out

* Adapter -> Provider

* Make each inference provider into its own subdirectory

* installation fixes

* Rename Distribution -> DistributionSpec, simplify RemoteProviders

* dict key instead of attr

* update inference config to take model and not model_dir

* Fix passthrough streaming, send headers properly not part of body :facepalm

* update safety to use model sku ids and not model dirs

* Update cli_reference.md

* minor fixes

* add DistributionConfig, fix a bug in model download

* Make install + start scripts do proper configuration automatically

* Update CLI_reference

* Nuke fp8_requirements, fold fbgemm into common requirements

* Update README, add newline between API surface configurations

* Refactor download functionality out of the Command so can be reused

* Add `llama model download` alias for `llama download`

* Show message about checksum file so users can check themselves

* Simpler intro statements

* get ollama working

* Reduce a bunch of dependencies from toolchain

Some improvements to the distribution install script

* Avoid using `conda run` since it buffers everything

* update dependencies and rely on LLAMA_TOOLCHAIN_DIR for dev purposes

* add validation for configuration input

* resort imports

* make optional subclasses default to yes for configuration

* Remove additional_pip_packages; move deps to providers

* for inline make 8b model the default

* Add scripts to MANIFEST

* allow installing from test.pypi.org

* Fix #2 to help with testing packages

* Must install llama-models at that same version first

* fix PIP_ARGS

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Hardik Shah <hjshah@meta.com>
2024-08-08 13:38:41 -07:00

380 lines
16 KiB
Python

import textwrap
import unittest
from datetime import datetime
from llama_models.llama3_1.api.datatypes import (
BuiltinTool,
UserMessage,
StopReason,
SamplingParams,
SamplingStrategy,
SystemMessage,
ToolResponseMessage,
)
from llama_toolchain.inference.api.datatypes import (
ChatCompletionResponseEventType,
)
from llama_toolchain.inference.api.endpoints import ChatCompletionRequest
from llama_toolchain.inference.ollama.config import OllamaImplConfig
from llama_toolchain.inference.ollama.ollama import get_provider_impl
class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
async def asyncSetUp(self):
ollama_config = OllamaImplConfig(url="http://localhost:11434")
# setup ollama
self.api = await get_provider_impl(ollama_config, {})
await self.api.initialize()
current_date = datetime.now()
formatted_date = current_date.strftime("%d %B %Y")
self.system_prompt = SystemMessage(
content=textwrap.dedent(
f"""
Environment: ipython
Tools: brave_search
Cutting Knowledge Date: December 2023
Today Date:{formatted_date}
"""
),
)
self.system_prompt_with_custom_tool = SystemMessage(
content=textwrap.dedent(
"""
Environment: ipython
Tools: brave_search, wolfram_alpha, photogen
Cutting Knowledge Date: December 2023
Today Date: 30 July 2024
You have access to the following functions:
Use the function 'get_boiling_point' to 'Get the boiling point of a imaginary liquids (eg. polyjuice)'
{"name": "get_boiling_point", "description": "Get the boiling point of a imaginary liquids (eg. polyjuice)", "parameters": {"liquid_name": {"param_type": "string", "description": "The name of the liquid", "required": true}, "celcius": {"param_type": "boolean", "description": "Whether to return the boiling point in Celcius", "required": false}}}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{"example_name": "example_value"}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Put the entire function call reply on one line
"""
),
)
self.valid_supported_model = "Meta-Llama3.1-8B-Instruct"
async def asyncTearDown(self):
await self.api.shutdown()
async def test_text(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
UserMessage(
content="What is the capital of France?",
),
],
stream=False,
)
iterator = self.api.chat_completion(request)
async for r in iterator:
response = r
self.assertTrue("Paris" in response.completion_message.content)
self.assertEqual(
response.completion_message.stop_reason, StopReason.end_of_turn
)
async def test_tool_call(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Who is the current US President?",
),
],
stream=False,
)
iterator = self.api.chat_completion(request)
async for r in iterator:
response = r
completion_message = response.completion_message
self.assertEqual(completion_message.content, "")
self.assertEqual(completion_message.stop_reason, StopReason.end_of_message)
self.assertEqual(
len(completion_message.tool_calls), 1, completion_message.tool_calls
)
self.assertEqual(
completion_message.tool_calls[0].tool_name, BuiltinTool.brave_search
)
self.assertTrue(
"president" in completion_message.tool_calls[0].arguments["query"].lower()
)
async def test_code_execution(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Write code to compute the 5th prime number",
),
],
stream=False,
)
iterator = self.api.chat_completion(request)
async for r in iterator:
response = r
completion_message = response.completion_message
self.assertEqual(completion_message.content, "")
self.assertEqual(completion_message.stop_reason, StopReason.end_of_message)
self.assertEqual(
len(completion_message.tool_calls), 1, completion_message.tool_calls
)
self.assertEqual(
completion_message.tool_calls[0].tool_name, BuiltinTool.code_interpreter
)
code = completion_message.tool_calls[0].arguments["code"]
self.assertTrue("def " in code.lower(), code)
async def test_custom_tool(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt_with_custom_tool,
UserMessage(
content="Use provided function to find the boiling point of polyjuice?",
),
],
stream=False,
)
iterator = self.api.chat_completion(request)
async for r in iterator:
response = r
completion_message = response.completion_message
self.assertEqual(completion_message.content, "")
self.assertTrue(
completion_message.stop_reason
in {
StopReason.end_of_turn,
StopReason.end_of_message,
}
)
self.assertEqual(
len(completion_message.tool_calls), 1, completion_message.tool_calls
)
self.assertEqual(
completion_message.tool_calls[0].tool_name, "get_boiling_point"
)
args = completion_message.tool_calls[0].arguments
self.assertTrue(isinstance(args, dict))
self.assertTrue(args["liquid_name"], "polyjuice")
async def test_text_streaming(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
UserMessage(
content="What is the capital of France?",
),
],
stream=True,
)
iterator = self.api.chat_completion(request)
events = []
async for chunk in iterator:
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
events.append(chunk.event)
response = ""
for e in events[1:-1]:
response += e.delta
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
# last event is of type "complete"
self.assertEqual(
events[-1].event_type, ChatCompletionResponseEventType.complete
)
# last but 1 event should be of type "progress"
self.assertEqual(
events[-2].event_type, ChatCompletionResponseEventType.progress
)
self.assertEqual(
events[-2].stop_reason,
None,
)
self.assertTrue("Paris" in response, response)
async def test_tool_call_streaming(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Who is the current US President?",
),
],
stream=True,
)
iterator = self.api.chat_completion(request)
events = []
async for chunk in iterator:
events.append(chunk.event)
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
# last event is of type "complete"
self.assertEqual(
events[-1].event_type, ChatCompletionResponseEventType.complete
)
# last but one event should be eom with tool call
self.assertEqual(
events[-2].event_type, ChatCompletionResponseEventType.progress
)
self.assertEqual(events[-2].stop_reason, StopReason.end_of_message)
self.assertEqual(events[-2].delta.content.tool_name, BuiltinTool.brave_search)
async def test_custom_tool_call_streaming(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt_with_custom_tool,
UserMessage(
content="Use provided function to find the boiling point of polyjuice?",
),
],
stream=True,
)
iterator = self.api.chat_completion(request)
events = []
async for chunk in iterator:
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
events.append(chunk.event)
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
# last event is of type "complete"
self.assertEqual(
events[-1].event_type, ChatCompletionResponseEventType.complete
)
self.assertEqual(events[-1].stop_reason, StopReason.end_of_turn)
# last but one event should be eom with tool call
self.assertEqual(
events[-2].event_type, ChatCompletionResponseEventType.progress
)
self.assertEqual(events[-2].delta.content.tool_name, "get_boiling_point")
self.assertEqual(events[-2].stop_reason, StopReason.end_of_turn)
def test_resolve_ollama_model(self):
ollama_model = self.api.resolve_ollama_model(self.valid_supported_model)
self.assertEqual(ollama_model, "llama3.1:8b-instruct-fp16")
invalid_model = "Meta-Llama3.1-8B"
with self.assertRaisesRegex(
AssertionError, f"Unsupported model: {invalid_model}"
):
self.api.resolve_ollama_model(invalid_model)
async def test_ollama_chat_options(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
UserMessage(
content="What is the capital of France?",
),
],
stream=False,
sampling_params=SamplingParams(
sampling_strategy=SamplingStrategy.top_p,
top_p=0.99,
temperature=1.0,
),
)
options = self.api.get_ollama_chat_options(request)
self.assertEqual(
options,
{
"temperature": 1.0,
"top_p": 0.99,
},
)
async def test_multi_turn(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Search the web and tell me who the "
"44th president of the United States was",
),
ToolResponseMessage(
call_id="1",
tool_name=BuiltinTool.brave_search,
content='{"query": "44th president of the United States", "top_k": [{"title": "Barack Obama | The White House", "url": "https://www.whitehouse.gov/about-the-white-house/presidents/barack-obama/", "description": "<strong>Barack Obama</strong> served as the 44th President of the United States. His story is the American story \\u2014 values from the heartland, a middle-class upbringing in a strong family, hard work and education as the means of getting ahead, and the conviction that a life so blessed should be lived in service ...", "type": "search_result"}, {"title": "Barack Obama \\u2013 The White House", "url": "https://trumpwhitehouse.archives.gov/about-the-white-house/presidents/barack-obama/", "description": "After working his way through college with the help of scholarships and student loans, <strong>President Obama</strong> moved to Chicago, where he worked with a group of churches to help rebuild communities devastated by the closure of local steel plants.", "type": "search_result"}, [{"type": "video_result", "url": "https://www.instagram.com/reel/CzMZbJmObn9/", "title": "Fifteen years ago, on Nov. 4, Barack Obama was elected as ...", "description": ""}, {"type": "video_result", "url": "https://video.alexanderstreet.com/watch/the-44th-president-barack-obama?context=channel:barack-obama", "title": "The 44th President (Barack Obama) - Alexander Street, a ...", "description": "You need to enable JavaScript to run this app"}, {"type": "video_result", "url": "https://www.youtube.com/watch?v=iyL7_2-em5k", "title": "Barack Obama for Kids | Learn about the life and contributions ...", "description": "Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube."}, {"type": "video_result", "url": "https://www.britannica.com/video/172743/overview-Barack-Obama", "title": "President of the United States of America Barack Obama | Britannica", "description": "[NARRATOR] Barack Obama was elected the 44th president of the United States in 2008, becoming the first African American to hold the office. Obama vowed to bring change to the political system."}, {"type": "video_result", "url": "https://www.youtube.com/watch?v=rvr2g8-5dcE", "title": "The 44th President: In His Own Words - Toughest Day | Special ...", "description": "President Obama reflects on his toughest day in the Presidency and seeing Secret Service cry for the first time. Watch the premiere of The 44th President: In..."}]]}',
),
],
stream=True,
)
iterator = self.api.chat_completion(request)
events = []
async for chunk in iterator:
events.append(chunk.event)
response = ""
for e in events[1:-1]:
response += e.delta
self.assertTrue("obama" in response.lower())
async def test_tool_call_code_streaming(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Write code to answer this question: What is the 100th prime number?",
),
],
stream=True,
)
iterator = self.api.chat_completion(request)
events = []
async for chunk in iterator:
events.append(chunk.event)
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
# last event is of type "complete"
self.assertEqual(
events[-1].event_type, ChatCompletionResponseEventType.complete
)
# last but one event should be eom with tool call
self.assertEqual(
events[-2].event_type, ChatCompletionResponseEventType.progress
)
self.assertEqual(events[-2].stop_reason, StopReason.end_of_message)
self.assertEqual(
events[-2].delta.content.tool_name, BuiltinTool.code_interpreter
)