llama-stack/llama_stack/providers/remote/inference/sambanova/sambanova.py
Ben Browning e9b8259cf9
fix: Get distro_codegen.py working with default deps and enabled in pre-commit hooks (#1123)
# What does this PR do?

Before this change, `distro_codegen.py` would only work if the user
manually installed multiple provider-specific dependencies (see #1122).
Now, users can run `distro_codegen.py` without any provider-specific
dependencies because we avoid importing the entire provider
implementations just to get the config needed to build the provider
template.

Concretely, this mostly means moving the
MODEL_ALIASES (and related variants) definitions to a new models.py
class within the provider implementation for those providers that
require additional dependencies. It also meant moving a couple of
imports from top-level imports to inside `get_adapter_impl` for some
providers, which follows the pattern used by multiple existing
providers.

To ensure we don't regress and accidentally add new imports that cause
distro_codegen.py to fail, the stubbed-in pre-commit hook for
distro_codegen.py was uncommented and slightly tweaked to run via `uv
run python ...` to ensure it runs with only the project's default
dependencies and to run automatically instead of manually.

Lastly, this updates distro_codegen.py itself to keep track of paths it
might have changed and to only `git diff` those specific paths when
checking for changed files instead of doing a diff on the entire working
tree. The latter was overly broad and would require a user have no other
unstaged changes in their working tree, even if those unstaged changes
were unrelated to generated code. Now it only flags uncommitted changes
for paths distro_codegen.py actually writes to.

Our generated code was also out-of-date, presumably because of these
issues, so this commit also has some updates to the generated code
purely because it was out of sync, and the pre-commit hook now enforces
things to be updated.

(Closes #1122)

## Test Plan

I manually tested distro_codegen.py and the pre-commit hook to verify
those work as expected, flagging any uncommited changes and catching any
imports that attempt to pull in provider-specific dependencies.

However, I do not have valid api keys to the impacted provider
implementations, and am unable to easily run the inference tests against
each changed provider. There are no functional changes to the provider
implementations here, but I'd appreciate a second set of eyes on the
changed import statements and moving of MODEL_ALIASES type code to a
separate models.py to ensure I didn't make any obvious errors.

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-02-19 18:39:20 -08:00

288 lines
10 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from openai import OpenAI
from llama_stack.apis.common.content_types import (
ImageContentItem,
InterleavedContent,
TextContentItem,
)
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.models.llama.datatypes import (
GreedySamplingStrategy,
TopKSamplingStrategy,
TopPSamplingStrategy,
)
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
convert_image_content_to_url,
)
from .config import SambaNovaImplConfig
from .models import MODEL_ALIASES
class SambaNovaInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: SambaNovaImplConfig) -> None:
ModelRegistryHelper.__init__(
self,
model_aliases=MODEL_ALIASES,
)
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
async def initialize(self) -> None:
return
async def shutdown(self) -> None:
pass
def _get_client(self) -> OpenAI:
return OpenAI(base_url=self.config.url, api_key=self.config.api_key)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
tool_config: Optional[ToolConfig] = None,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
stream=stream,
logprobs=logprobs,
tool_config=tool_config,
)
request_sambanova = await self.convert_chat_completion_request(request)
if stream:
return self._stream_chat_completion(request_sambanova)
else:
return await self._nonstream_chat_completion(request_sambanova)
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
response = self._get_client().chat.completions.create(**request)
choice = response.choices[0]
result = ChatCompletionResponse(
completion_message=CompletionMessage(
content=choice.message.content or "",
stop_reason=self.convert_to_sambanova_finish_reason(choice.finish_reason),
tool_calls=self.convert_to_sambanova_tool_calls(choice.message.tool_calls),
),
logprobs=None,
)
return result
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
async def _to_async_generator():
streaming = self._get_client().chat.completions.create(**request)
for chunk in streaming:
yield chunk
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(stream, self.formatter, request):
yield chunk
async def embeddings(
self,
model_id: str,
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
async def convert_chat_completion_request(self, request: ChatCompletionRequest) -> dict:
compatible_request = self.convert_sampling_params(request.sampling_params)
compatible_request["model"] = request.model
compatible_request["messages"] = await self.convert_to_sambanova_messages(request.messages)
compatible_request["stream"] = request.stream
compatible_request["logprobs"] = False
compatible_request["extra_headers"] = {
b"User-Agent": b"llama-stack: sambanova-inference-adapter",
}
compatible_request["tools"] = self.convert_to_sambanova_tool(request.tools)
return compatible_request
def convert_sampling_params(self, sampling_params: SamplingParams, legacy: bool = False) -> dict:
params = {}
if sampling_params:
params["frequency_penalty"] = sampling_params.repetition_penalty
if sampling_params.max_tokens:
if legacy:
params["max_tokens"] = sampling_params.max_tokens
else:
params["max_completion_tokens"] = sampling_params.max_tokens
if isinstance(sampling_params.strategy, TopPSamplingStrategy):
params["top_p"] = sampling_params.strategy.top_p
if isinstance(sampling_params.strategy, TopKSamplingStrategy):
params["extra_body"]["top_k"] = sampling_params.strategy.top_k
if isinstance(sampling_params.strategy, GreedySamplingStrategy):
params["temperature"] = 0.0
return params
async def convert_to_sambanova_messages(self, messages: List[Message]) -> List[dict]:
conversation = []
for message in messages:
content = {}
content["content"] = await self.convert_to_sambanova_content(message)
if isinstance(message, UserMessage):
content["role"] = "user"
elif isinstance(message, CompletionMessage):
content["role"] = "assistant"
tools = []
for tool_call in message.tool_calls:
tools.append(
{
"id": tool_call.call_id,
"function": {
"name": tool_call.name,
"arguments": json.dumps(tool_call.arguments),
},
"type": "function",
}
)
content["tool_calls"] = tools
elif isinstance(message, ToolResponseMessage):
content["role"] = "tool"
content["tool_call_id"] = message.call_id
elif isinstance(message, SystemMessage):
content["role"] = "system"
conversation.append(content)
return conversation
async def convert_to_sambanova_content(self, message: Message) -> dict:
async def _convert_content(content) -> dict:
if isinstance(content, ImageContentItem):
url = await convert_image_content_to_url(content, download=True)
# A fix to make sure the call sucess.
components = url.split(";base64")
url = f"{components[0].lower()};base64{components[1]}"
return {
"type": "image_url",
"image_url": {"url": url},
}
else:
text = content.text if isinstance(content, TextContentItem) else content
assert isinstance(text, str)
return {"type": "text", "text": text}
if isinstance(message.content, list):
# If it is a list, the text content should be wrapped in dict
content = [await _convert_content(c) for c in message.content]
else:
content = message.content
return content
def convert_to_sambanova_tool(self, tools: List[ToolDefinition]) -> List[dict]:
if tools is None:
return tools
compatiable_tools = []
for tool in tools:
properties = {}
compatiable_required = []
if tool.parameters:
for tool_key, tool_param in tool.parameters.items():
properties[tool_key] = {"type": tool_param.param_type}
if tool_param.description:
properties[tool_key]["description"] = tool_param.description
if tool_param.default:
properties[tool_key]["default"] = tool_param.default
if tool_param.required:
compatiable_required.append(tool_key)
compatiable_tool = {
"type": "function",
"function": {
"name": tool.tool_name,
"description": tool.description,
"parameters": {
"type": "object",
"properties": properties,
"required": compatiable_required,
},
},
}
compatiable_tools.append(compatiable_tool)
if len(compatiable_tools) > 0:
return compatiable_tools
return None
def convert_to_sambanova_finish_reason(self, finish_reason: str) -> StopReason:
return {
"stop": StopReason.end_of_turn,
"length": StopReason.out_of_tokens,
"tool_calls": StopReason.end_of_message,
}.get(finish_reason, StopReason.end_of_turn)
def convert_to_sambanova_tool_calls(
self,
tool_calls,
) -> List[ToolCall]:
if not tool_calls:
return []
for call in tool_calls:
call_function_arguments = json.loads(call.function.arguments)
compitable_tool_calls = [
ToolCall(
call_id=call.id,
tool_name=call.function.name,
arguments=call_function_arguments,
)
for call in tool_calls
]
return compitable_tool_calls