forked from phoenix-oss/llama-stack-mirror
* resource oriented object design for models * add back llama_model field * working tests * register singature fix * address feedback --------- Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
420 lines
15 KiB
Python
420 lines
15 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
|
|
from typing import AsyncGenerator, List
|
|
|
|
from llama_models.sku_list import resolve_model
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
|
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
convert_image_media_to_url,
|
|
request_has_media,
|
|
)
|
|
|
|
from .config import MetaReferenceInferenceConfig
|
|
from .generation import Llama
|
|
from .model_parallel import LlamaModelParallelGenerator
|
|
|
|
# there's a single model parallel process running serving the model. for now,
|
|
# we don't support multiple concurrent requests to this process.
|
|
SEMAPHORE = asyncio.Semaphore(1)
|
|
|
|
|
|
class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
|
|
self.config = config
|
|
model = resolve_model(config.model)
|
|
if model is None:
|
|
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
|
|
self.model = model
|
|
# verify that the checkpoint actually is for this model lol
|
|
|
|
async def initialize(self) -> None:
|
|
print(f"Loading model `{self.model.descriptor()}`")
|
|
if self.config.create_distributed_process_group:
|
|
self.generator = LlamaModelParallelGenerator(self.config)
|
|
self.generator.start()
|
|
else:
|
|
self.generator = Llama.build(self.config)
|
|
|
|
async def register_model(self, model: Model) -> None:
|
|
if model.identifier != self.model.descriptor():
|
|
raise ValueError(
|
|
f"Model mismatch: {model.identifier} != {self.model.descriptor()}"
|
|
)
|
|
|
|
async def shutdown(self) -> None:
|
|
if self.config.create_distributed_process_group:
|
|
self.generator.stop()
|
|
|
|
def check_model(self, request) -> None:
|
|
model = resolve_model(request.model)
|
|
if model is None:
|
|
raise RuntimeError(
|
|
f"Unknown model: {request.model}, Run `llama model list`"
|
|
)
|
|
elif model.descriptor() != self.model.descriptor():
|
|
raise RuntimeError(
|
|
f"Model mismatch: {request.model} != {self.model.descriptor()}"
|
|
)
|
|
|
|
async def completion(
|
|
self,
|
|
model: str,
|
|
content: InterleavedTextMedia,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
|
|
if logprobs:
|
|
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
|
|
|
|
request = CompletionRequest(
|
|
model=model,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
self.check_model(request)
|
|
request = await request_with_localized_media(request)
|
|
|
|
if request.stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
def impl():
|
|
stop_reason = None
|
|
|
|
for token_result in self.generator.completion(request):
|
|
if token_result.text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
elif token_result.text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
else:
|
|
text = token_result.text
|
|
|
|
logprobs = None
|
|
if stop_reason is None:
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs = [
|
|
TokenLogProbs(
|
|
logprobs_by_token={
|
|
token_result.text: token_result.logprobs[0]
|
|
}
|
|
)
|
|
]
|
|
|
|
yield CompletionResponseStreamChunk(
|
|
delta=text,
|
|
stop_reason=stop_reason,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
|
|
if stop_reason is None:
|
|
yield CompletionResponseStreamChunk(
|
|
delta="",
|
|
stop_reason=StopReason.out_of_tokens,
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
for x in impl():
|
|
yield x
|
|
else:
|
|
for x in impl():
|
|
yield x
|
|
|
|
async def _nonstream_completion(
|
|
self, request: CompletionRequest
|
|
) -> CompletionResponse:
|
|
def impl():
|
|
tokens = []
|
|
logprobs = []
|
|
stop_reason = None
|
|
|
|
tokenizer = self.generator.formatter.tokenizer
|
|
for token_result in self.generator.completion(request):
|
|
tokens.append(token_result.token)
|
|
|
|
if token_result.token in tokenizer.stop_tokens:
|
|
# not quite right semantically
|
|
stop_reason = StopReason.end_of_turn
|
|
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs.append(
|
|
TokenLogProbs(
|
|
logprobs_by_token={
|
|
token_result.text: token_result.logprobs[0]
|
|
}
|
|
)
|
|
)
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
content = self.generator.formatter.tokenizer.decode(tokens)
|
|
return CompletionResponse(
|
|
content=content,
|
|
stop_reason=stop_reason,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
return impl()
|
|
else:
|
|
return impl()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if logprobs:
|
|
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
|
|
|
|
# wrapper request to make it easier to pass around (internal only, not exposed to API)
|
|
request = ChatCompletionRequest(
|
|
model=model,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
self.check_model(request)
|
|
request = await request_with_localized_media(request)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
if SEMAPHORE.locked():
|
|
raise RuntimeError("Only one concurrent request is supported")
|
|
|
|
if request.stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> ChatCompletionResponse:
|
|
def impl():
|
|
tokens = []
|
|
logprobs = []
|
|
stop_reason = None
|
|
|
|
for token_result in self.generator.chat_completion(request):
|
|
tokens.append(token_result.token)
|
|
|
|
if token_result.text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
elif token_result.text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs.append(
|
|
TokenLogProbs(
|
|
logprobs_by_token={
|
|
token_result.text: token_result.logprobs[0]
|
|
}
|
|
)
|
|
)
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
message = self.generator.formatter.decode_assistant_message(
|
|
tokens, stop_reason
|
|
)
|
|
return ChatCompletionResponse(
|
|
completion_message=message,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
return impl()
|
|
else:
|
|
return impl()
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> AsyncGenerator:
|
|
def impl():
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.start,
|
|
delta="",
|
|
)
|
|
)
|
|
|
|
tokens = []
|
|
logprobs = []
|
|
stop_reason = None
|
|
ipython = False
|
|
|
|
for token_result in self.generator.chat_completion(request):
|
|
tokens.append(token_result.token)
|
|
|
|
if not ipython and token_result.text.startswith("<|python_tag|>"):
|
|
ipython = True
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.started,
|
|
),
|
|
)
|
|
)
|
|
continue
|
|
|
|
if token_result.text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
elif token_result.text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
else:
|
|
text = token_result.text
|
|
|
|
if ipython:
|
|
delta = ToolCallDelta(
|
|
content=text,
|
|
parse_status=ToolCallParseStatus.in_progress,
|
|
)
|
|
else:
|
|
delta = text
|
|
|
|
if stop_reason is None:
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs.append(
|
|
TokenLogProbs(
|
|
logprobs_by_token={
|
|
token_result.text: token_result.logprobs[0]
|
|
}
|
|
)
|
|
)
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=delta,
|
|
stop_reason=stop_reason,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
)
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
message = self.generator.formatter.decode_assistant_message(
|
|
tokens, stop_reason
|
|
)
|
|
|
|
parsed_tool_calls = len(message.tool_calls) > 0
|
|
if ipython and not parsed_tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.failure,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
for tool_call in message.tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content=tool_call,
|
|
parse_status=ToolCallParseStatus.success,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.complete,
|
|
delta="",
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
for x in impl():
|
|
yield x
|
|
else:
|
|
for x in impl():
|
|
yield x
|
|
|
|
async def embeddings(
|
|
self,
|
|
model: str,
|
|
contents: List[InterleavedTextMedia],
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|
|
|
|
|
|
async def request_with_localized_media(
|
|
request: Union[ChatCompletionRequest, CompletionRequest],
|
|
) -> Union[ChatCompletionRequest, CompletionRequest]:
|
|
if not request_has_media(request):
|
|
return request
|
|
|
|
async def _convert_single_content(content):
|
|
if isinstance(content, ImageMedia):
|
|
url = await convert_image_media_to_url(content, download=True)
|
|
return ImageMedia(image=URL(uri=url))
|
|
else:
|
|
return content
|
|
|
|
async def _convert_content(content):
|
|
if isinstance(content, list):
|
|
return [await _convert_single_content(c) for c in content]
|
|
else:
|
|
return await _convert_single_content(content)
|
|
|
|
if isinstance(request, ChatCompletionRequest):
|
|
for m in request.messages:
|
|
m.content = await _convert_content(m.content)
|
|
else:
|
|
request.content = await _convert_content(request.content)
|
|
|
|
return request
|