llama-stack/llama_stack/apis/vector_io/vector_io.py
Ihar Hrachyshka 515c16e352
chore: mypy violations cleanup for inline::{telemetry,tool_runtime,vector_io} (#1711)
# What does this PR do?

Clean up mypy violations for inline::{telemetry,tool_runtime,vector_io}.
This also makes API accept a tool call result without any content (like
RAG tool already may produce).

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-20 10:01:10 -07:00

57 lines
1.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from pydantic import BaseModel, Field
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
class Chunk(BaseModel):
content: InterleavedContent
metadata: Dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class QueryChunksResponse(BaseModel):
chunks: List[Chunk]
scores: List[float]
class VectorDBStore(Protocol):
def get_vector_db(self, vector_db_id: str) -> Optional[VectorDB]: ...
@runtime_checkable
@trace_protocol
class VectorIO(Protocol):
vector_db_store: VectorDBStore | None = None
# this will just block now until chunks are inserted, but it should
# probably return a Job instance which can be polled for completion
@webmethod(route="/vector-io/insert", method="POST")
async def insert_chunks(
self,
vector_db_id: str,
chunks: List[Chunk],
ttl_seconds: Optional[int] = None,
) -> None: ...
@webmethod(route="/vector-io/query", method="POST")
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: Optional[Dict[str, Any]] = None,
) -> QueryChunksResponse: ...