llama-stack/llama_stack/providers
Ashwin Bharambe f34f22f8c7
feat: add batch inference API to llama stack inference (#1945)
# What does this PR do?

This PR adds two methods to the Inference API:
- `batch_completion`
- `batch_chat_completion`

The motivation is for evaluations targeting a local inference engine
(like meta-reference or vllm) where batch APIs provide for a substantial
amount of acceleration.

Why did I not add this to `Api.batch_inference` though? That just
resulted in a _lot_ more book-keeping given the structure of Llama
Stack. Had I done that, I would have needed to create a notion of a
"batch model" resource, setup routing based on that, etc. This does not
sound ideal.

So what's the future of the batch inference API? I am not sure. Maybe we
can keep it for true _asynchronous_ execution. So you can submit
requests, and it can return a Job instance, etc.

## Test Plan

Run meta-reference-gpu using:
```bash
export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct
export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct-20250331210000
export MODEL_PARALLEL_SIZE=4
export MAX_BATCH_SIZE=32
export MAX_SEQ_LEN=6144

LLAMA_MODELS_DEBUG=1 llama stack run meta-reference-gpu
```

Then run the batch inference test case.
2025-04-12 11:41:12 -07:00
..
inline feat: add batch inference API to llama stack inference (#1945) 2025-04-12 11:41:12 -07:00
registry fix: use torchao 0.8.0 for inference (#1925) 2025-04-10 13:39:20 -07:00
remote feat: add batch inference API to llama stack inference (#1945) 2025-04-12 11:41:12 -07:00
tests refactor: move all llama code to models/llama out of meta reference (#1887) 2025-04-07 15:03:58 -07:00
utils feat: add batch inference API to llama stack inference (#1945) 2025-04-12 11:41:12 -07:00
__init__.py API Updates (#73) 2024-09-17 19:51:35 -07:00
datatypes.py chore: more mypy checks (ollama, vllm, ...) (#1777) 2025-04-01 17:12:39 +02:00