forked from phoenix-oss/llama-stack-mirror
# What does this PR do?
This PR adds `sqlite_vec` as an additional inline vectordb.
Tested with `ollama` by adding the `vector_io` object in
`./llama_stack/templates/ollama/run.yaml` :
```yaml
vector_io:
- provider_id: sqlite_vec
provider_type: inline::sqlite_vec
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
```
I also updated the `./tests/client-sdk/vector_io/test_vector_io.py` test
file with:
```python
INLINE_VECTOR_DB_PROVIDERS = ["faiss", "sqlite_vec"]
```
And parameterized the relevant tests.
[//]: # (If resolving an issue, uncomment and update the line below)
# Closes
https://github.com/meta-llama/llama-stack/issues/1005
## Test Plan
I ran the tests with:
```bash
INFERENCE_MODEL=llama3.2:3b-instruct-fp16 LLAMA_STACK_CONFIG=ollama pytest -s -v tests/client-sdk/vector_io/test_vector_io.py
```
Which outputs:
```python
...
PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_retrieve[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_list PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[sqlite_vec] PASSED
```
In addition, I ran the `rag_with_vector_db.py`
[example](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py)
using the script below with `uv run rag_example.py`.
<details>
<summary>CLICK TO SHOW SCRIPT 👋 </summary>
```python
#!/usr/bin/env python3
import os
import uuid
from termcolor import cprint
# Set environment variables
os.environ['INFERENCE_MODEL'] = 'llama3.2:3b-instruct-fp16'
os.environ['LLAMA_STACK_CONFIG'] = 'ollama'
# Import libraries after setting environment variables
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types import Document
def main():
# Initialize the client
client = LlamaStackAsLibraryClient("ollama")
vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"
_ = client.initialize()
model_id = 'llama3.2:3b-instruct-fp16'
# Define the list of document URLs and create Document objects
urls = [
"chat.rst",
"llama3.rst",
"memory_optimizations.rst",
"lora_finetune.rst",
]
documents = [
Document(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
# (Optional) Use the documents as needed with your client here
client.vector_dbs.register(
provider_id='sqlite_vec',
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
)
client.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
# Create agent configuration
agent_config = AgentConfig(
model=model_id,
instructions="You are a helpful assistant",
enable_session_persistence=False,
toolgroups=[
{
"name": "builtin::rag",
"args": {
"vector_db_ids": [vector_db_id],
}
}
],
)
# Instantiate the Agent
agent = Agent(client, agent_config)
# List of user prompts
user_prompts = [
"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.",
"Was anything related to 'Llama3' discussed, if so what?",
"Tell me how to use LoRA",
"What about Quantization?",
]
# Create a session for the agent
session_id = agent.create_session("test-session")
# Process each prompt and display the output
for prompt in user_prompts:
cprint(f"User> {prompt}", "green")
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
# Log and print events from the response
for log in EventLogger().log(response):
log.print()
if __name__ == "__main__":
main()
```
</details>
Which outputs a large summary of RAG generation.
# Documentation
Will handle documentation updates in follow-up PR.
# (- [ ] Added a Changelog entry if the change is significant)
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
124 lines
4.9 KiB
Python
124 lines
4.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import List
|
|
|
|
from llama_stack.providers.datatypes import (
|
|
AdapterSpec,
|
|
Api,
|
|
InlineProviderSpec,
|
|
ProviderSpec,
|
|
remote_provider_spec,
|
|
)
|
|
|
|
EMBEDDING_DEPS = [
|
|
"blobfile",
|
|
"chardet",
|
|
"pypdf",
|
|
"tqdm",
|
|
"numpy",
|
|
"scikit-learn",
|
|
"scipy",
|
|
"nltk",
|
|
"sentencepiece",
|
|
"transformers",
|
|
# this happens to work because special dependencies are always installed last
|
|
# so if there was a regular torch installed first, this would be ignored
|
|
# we need a better way to do this to identify potential conflicts, etc.
|
|
# for now, this lets us significantly reduce the size of the container which
|
|
# does not have any "local" inference code (and hence does not need GPU-enabled torch)
|
|
"torch torchvision --index-url https://download.pytorch.org/whl/cpu",
|
|
"sentence-transformers --no-deps",
|
|
]
|
|
|
|
|
|
def available_providers() -> List[ProviderSpec]:
|
|
return [
|
|
InlineProviderSpec(
|
|
api=Api.vector_io,
|
|
provider_type="inline::meta-reference",
|
|
pip_packages=EMBEDDING_DEPS + ["faiss-cpu"],
|
|
module="llama_stack.providers.inline.vector_io.faiss",
|
|
config_class="llama_stack.providers.inline.vector_io.faiss.FaissImplConfig",
|
|
deprecation_warning="Please use the `inline::faiss` provider instead.",
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
InlineProviderSpec(
|
|
api=Api.vector_io,
|
|
provider_type="inline::faiss",
|
|
pip_packages=EMBEDDING_DEPS + ["faiss-cpu"],
|
|
module="llama_stack.providers.inline.vector_io.faiss",
|
|
config_class="llama_stack.providers.inline.vector_io.faiss.FaissImplConfig",
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
InlineProviderSpec(
|
|
api=Api.vector_io,
|
|
provider_type="inline::sqlite_vec",
|
|
pip_packages=EMBEDDING_DEPS + ["sqlite-vec"],
|
|
module="llama_stack.providers.inline.vector_io.sqlite_vec",
|
|
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
remote_provider_spec(
|
|
Api.vector_io,
|
|
AdapterSpec(
|
|
adapter_type="chromadb",
|
|
pip_packages=EMBEDDING_DEPS + ["chromadb-client"],
|
|
module="llama_stack.providers.remote.vector_io.chroma",
|
|
config_class="llama_stack.providers.remote.vector_io.chroma.ChromaRemoteImplConfig",
|
|
),
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
InlineProviderSpec(
|
|
api=Api.vector_io,
|
|
provider_type="inline::chromadb",
|
|
pip_packages=EMBEDDING_DEPS + ["chromadb"],
|
|
module="llama_stack.providers.inline.vector_io.chroma",
|
|
config_class="llama_stack.providers.inline.vector_io.chroma.ChromaInlineImplConfig",
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
remote_provider_spec(
|
|
Api.vector_io,
|
|
AdapterSpec(
|
|
adapter_type="pgvector",
|
|
pip_packages=EMBEDDING_DEPS + ["psycopg2-binary"],
|
|
module="llama_stack.providers.remote.vector_io.pgvector",
|
|
config_class="llama_stack.providers.remote.vector_io.pgvector.PGVectorConfig",
|
|
),
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
remote_provider_spec(
|
|
Api.vector_io,
|
|
AdapterSpec(
|
|
adapter_type="weaviate",
|
|
pip_packages=EMBEDDING_DEPS + ["weaviate-client"],
|
|
module="llama_stack.providers.remote.vector_io.weaviate",
|
|
config_class="llama_stack.providers.remote.vector_io.weaviate.WeaviateConfig",
|
|
provider_data_validator="llama_stack.providers.remote.vector_io.weaviate.WeaviateRequestProviderData",
|
|
),
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
remote_provider_spec(
|
|
api=Api.vector_io,
|
|
adapter=AdapterSpec(
|
|
adapter_type="sample",
|
|
pip_packages=[],
|
|
module="llama_stack.providers.remote.vector_io.sample",
|
|
config_class="llama_stack.providers.remote.vector_io.sample.SampleConfig",
|
|
),
|
|
api_dependencies=[],
|
|
),
|
|
remote_provider_spec(
|
|
Api.vector_io,
|
|
AdapterSpec(
|
|
adapter_type="qdrant",
|
|
pip_packages=EMBEDDING_DEPS + ["qdrant-client"],
|
|
module="llama_stack.providers.remote.vector_io.qdrant",
|
|
config_class="llama_stack.providers.remote.vector_io.qdrant.QdrantConfig",
|
|
),
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
]
|