llama-stack/tests/unit/rag/test_vector_store.py

326 lines
12 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import mimetypes
import os
from pathlib import Path
from unittest.mock import AsyncMock, MagicMock
import numpy as np
import pytest
from llama_stack.apis.tools import RAGDocument
from llama_stack.apis.vector_io import Chunk
from llama_stack.providers.utils.memory.vector_store import (
URL,
VectorDBWithIndex,
_validate_embedding,
content_from_doc,
make_overlapped_chunks,
)
DUMMY_PDF_PATH = Path(os.path.abspath(__file__)).parent / "fixtures" / "dummy.pdf"
# Depending on the machine, this can get parsed a couple of ways
DUMMY_PDF_TEXT_CHOICES = ["Dummy PDF file", "Dumm y PDF file"]
def read_file(file_path: str) -> bytes:
with open(file_path, "rb") as file:
return file.read()
def data_url_from_file(file_path: str) -> str:
with open(file_path, "rb") as file:
file_content = file.read()
base64_content = base64.b64encode(file_content).decode("utf-8")
mime_type, _ = mimetypes.guess_type(file_path)
data_url = f"data:{mime_type};base64,{base64_content}"
return data_url
class TestChunk:
def test_chunk(self):
chunk = Chunk(
content="Example chunk content",
metadata={"key": "value"},
embedding=[0.1, 0.2, 0.3],
)
assert chunk.content == "Example chunk content"
assert chunk.metadata == {"key": "value"}
assert chunk.embedding == [0.1, 0.2, 0.3]
chunk_no_embedding = Chunk(
content="Example chunk content",
metadata={"key": "value"},
)
assert chunk_no_embedding.embedding is None
class TestValidateEmbedding:
def test_valid_list_embeddings(self):
_validate_embedding([0.1, 0.2, 0.3], 0, 3)
_validate_embedding([1, 2, 3], 1, 3)
_validate_embedding([0.1, 2, 3.5], 2, 3)
def test_valid_numpy_embeddings(self):
_validate_embedding(np.array([0.1, 0.2, 0.3], dtype=np.float32), 0, 3)
_validate_embedding(np.array([0.1, 0.2, 0.3], dtype=np.float64), 1, 3)
_validate_embedding(np.array([1, 2, 3], dtype=np.int32), 2, 3)
_validate_embedding(np.array([1, 2, 3], dtype=np.int64), 3, 3)
def test_invalid_embedding_type(self):
error_msg = "must be a list or numpy array"
with pytest.raises(ValueError, match=error_msg):
_validate_embedding("not a list", 0, 3)
with pytest.raises(ValueError, match=error_msg):
_validate_embedding(None, 1, 3)
with pytest.raises(ValueError, match=error_msg):
_validate_embedding(42, 2, 3)
def test_non_numeric_values(self):
error_msg = "contains non-numeric values"
with pytest.raises(ValueError, match=error_msg):
_validate_embedding([0.1, "string", 0.3], 0, 3)
with pytest.raises(ValueError, match=error_msg):
_validate_embedding([0.1, None, 0.3], 1, 3)
with pytest.raises(ValueError, match=error_msg):
_validate_embedding([1, {}, 3], 2, 3)
def test_wrong_dimension(self):
with pytest.raises(ValueError, match="has dimension 4, expected 3"):
_validate_embedding([0.1, 0.2, 0.3, 0.4], 0, 3)
with pytest.raises(ValueError, match="has dimension 2, expected 3"):
_validate_embedding([0.1, 0.2], 1, 3)
with pytest.raises(ValueError, match="has dimension 0, expected 3"):
_validate_embedding([], 2, 3)
class TestVectorStore:
@pytest.mark.asyncio
async def test_returns_content_from_pdf_data_uri(self):
data_uri = data_url_from_file(DUMMY_PDF_PATH)
doc = RAGDocument(
document_id="dummy",
content=data_uri,
mime_type="application/pdf",
metadata={},
)
content = await content_from_doc(doc)
assert content in DUMMY_PDF_TEXT_CHOICES
@pytest.mark.asyncio
async def test_downloads_pdf_and_returns_content(self):
# Using GitHub to host the PDF file
url = "https://raw.githubusercontent.com/meta-llama/llama-stack/da035d69cfca915318eaf485770a467ca3c2a238/llama_stack/providers/tests/memory/fixtures/dummy.pdf"
doc = RAGDocument(
document_id="dummy",
content=url,
mime_type="application/pdf",
metadata={},
)
content = await content_from_doc(doc)
assert content in DUMMY_PDF_TEXT_CHOICES
@pytest.mark.asyncio
async def test_downloads_pdf_and_returns_content_with_url_object(self):
# Using GitHub to host the PDF file
url = "https://raw.githubusercontent.com/meta-llama/llama-stack/da035d69cfca915318eaf485770a467ca3c2a238/llama_stack/providers/tests/memory/fixtures/dummy.pdf"
doc = RAGDocument(
document_id="dummy",
content=URL(
uri=url,
),
mime_type="application/pdf",
metadata={},
)
content = await content_from_doc(doc)
assert content in DUMMY_PDF_TEXT_CHOICES
@pytest.mark.parametrize(
"window_len, overlap_len, expected_chunks",
[
(5, 2, 4), # Create 4 chunks with window of 5 and overlap of 2
(4, 1, 4), # Create 4 chunks with window of 4 and overlap of 1
],
)
def test_make_overlapped_chunks(self, window_len, overlap_len, expected_chunks):
document_id = "test_doc_123"
text = "This is a sample document for testing the chunking behavior"
original_metadata = {"source": "test", "date": "2023-01-01", "author": "llama"}
len_metadata_tokens = 24 # specific to the metadata above
chunks = make_overlapped_chunks(document_id, text, window_len, overlap_len, original_metadata)
assert len(chunks) == expected_chunks
# Check that each chunk has the right metadata
for chunk in chunks:
# Original metadata should be preserved
assert chunk.metadata["source"] == "test"
assert chunk.metadata["date"] == "2023-01-01"
assert chunk.metadata["author"] == "llama"
# New metadata should be added
assert chunk.metadata["document_id"] == document_id
assert "token_count" in chunk.metadata
assert isinstance(chunk.metadata["token_count"], int)
assert chunk.metadata["token_count"] > 0
assert chunk.metadata["metadata_token_count"] == len_metadata_tokens
def test_raise_overlapped_chunks_metadata_serialization_error(self):
document_id = "test_doc_ex"
text = "Some text"
window_len = 5
overlap_len = 2
class BadMetadata:
def __repr__(self):
raise TypeError("Cannot convert to string")
problematic_metadata = {"bad_metadata_example": BadMetadata()}
with pytest.raises(ValueError) as excinfo:
make_overlapped_chunks(document_id, text, window_len, overlap_len, problematic_metadata)
assert str(excinfo.value) == "Failed to serialize metadata to string"
assert isinstance(excinfo.value.__cause__, TypeError)
assert str(excinfo.value.__cause__) == "Cannot convert to string"
class TestVectorDBWithIndex:
@pytest.mark.asyncio
async def test_insert_chunks_without_embeddings(self):
mock_vector_db = MagicMock()
mock_vector_db.embedding_model = "test-model without embeddings"
mock_index = AsyncMock()
mock_inference_api = AsyncMock()
vector_db_with_index = VectorDBWithIndex(
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
)
chunks = [
Chunk(content="Test 1", embedding=None, metadata={}),
Chunk(content="Test 2", embedding=None, metadata={}),
]
mock_inference_api.embeddings.return_value.embeddings = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
await vector_db_with_index.insert_chunks(chunks)
mock_inference_api.embeddings.assert_called_once_with("test-model without embeddings", ["Test 1", "Test 2"])
mock_index.add_chunks.assert_called_once()
args = mock_index.add_chunks.call_args[0]
assert args[0] == chunks
assert np.array_equal(args[1], np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
@pytest.mark.asyncio
async def test_insert_chunks_with_valid_embeddings(self):
mock_vector_db = MagicMock()
mock_vector_db.embedding_model = "test-model with embeddings"
mock_vector_db.embedding_dimension = 3
mock_index = AsyncMock()
mock_inference_api = AsyncMock()
vector_db_with_index = VectorDBWithIndex(
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
)
chunks = [
Chunk(content="Test 1", embedding=[0.1, 0.2, 0.3], metadata={}),
Chunk(content="Test 2", embedding=[0.4, 0.5, 0.6], metadata={}),
]
await vector_db_with_index.insert_chunks(chunks)
mock_inference_api.embeddings.assert_not_called()
mock_index.add_chunks.assert_called_once()
args = mock_index.add_chunks.call_args[0]
assert args[0] == chunks
assert np.array_equal(args[1], np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
@pytest.mark.asyncio
async def test_insert_chunks_with_invalid_embeddings(self):
mock_vector_db = MagicMock()
mock_vector_db.embedding_dimension = 3
mock_vector_db.embedding_model = "test-model with invalid embeddings"
mock_index = AsyncMock()
mock_inference_api = AsyncMock()
vector_db_with_index = VectorDBWithIndex(
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
)
# Verify Chunk raises ValueError for invalid embedding type
with pytest.raises(ValueError, match="Input should be a valid list"):
Chunk(content="Test 1", embedding="invalid_type", metadata={})
# Verify Chunk raises ValueError for invalid embedding type in insert_chunks (i.e., Chunk errors before insert_chunks is called)
with pytest.raises(ValueError, match="Input should be a valid list"):
await vector_db_with_index.insert_chunks(
[
Chunk(content="Test 1", embedding=None, metadata={}),
Chunk(content="Test 2", embedding="invalid_type", metadata={}),
]
)
# Verify Chunk raises ValueError for invalid embedding element type in insert_chunks (i.e., Chunk errors before insert_chunks is called)
with pytest.raises(ValueError, match=" Input should be a valid number, unable to parse string as a number "):
await vector_db_with_index.insert_chunks(
Chunk(content="Test 1", embedding=[0.1, "string", 0.3], metadata={})
)
chunks_wrong_dim = [
Chunk(content="Test 1", embedding=[0.1, 0.2, 0.3, 0.4], metadata={}),
]
with pytest.raises(ValueError, match="has dimension 4, expected 3"):
await vector_db_with_index.insert_chunks(chunks_wrong_dim)
mock_inference_api.embeddings.assert_not_called()
mock_index.add_chunks.assert_not_called()
@pytest.mark.asyncio
async def test_insert_chunks_with_partially_precomputed_embeddings(self):
mock_vector_db = MagicMock()
mock_vector_db.embedding_model = "test-model with partial embeddings"
mock_vector_db.embedding_dimension = 3
mock_index = AsyncMock()
mock_inference_api = AsyncMock()
vector_db_with_index = VectorDBWithIndex(
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
)
chunks = [
Chunk(content="Test 1", embedding=None, metadata={}),
Chunk(content="Test 2", embedding=[0.2, 0.2, 0.2], metadata={}),
Chunk(content="Test 3", embedding=None, metadata={}),
]
mock_inference_api.embeddings.return_value.embeddings = [[0.1, 0.1, 0.1], [0.3, 0.3, 0.3]]
await vector_db_with_index.insert_chunks(chunks)
mock_inference_api.embeddings.assert_called_once_with(
"test-model with partial embeddings", ["Test 1", "Test 3"]
)
mock_index.add_chunks.assert_called_once()
args = mock_index.add_chunks.call_args[0]
assert len(args[0]) == 3
assert np.array_equal(args[1], np.array([[0.1, 0.1, 0.1], [0.2, 0.2, 0.2], [0.3, 0.3, 0.3]], dtype=np.float32))