llama-stack/tests
Ashwin Bharambe f34f22f8c7
feat: add batch inference API to llama stack inference (#1945)
# What does this PR do?

This PR adds two methods to the Inference API:
- `batch_completion`
- `batch_chat_completion`

The motivation is for evaluations targeting a local inference engine
(like meta-reference or vllm) where batch APIs provide for a substantial
amount of acceleration.

Why did I not add this to `Api.batch_inference` though? That just
resulted in a _lot_ more book-keeping given the structure of Llama
Stack. Had I done that, I would have needed to create a notion of a
"batch model" resource, setup routing based on that, etc. This does not
sound ideal.

So what's the future of the batch inference API? I am not sure. Maybe we
can keep it for true _asynchronous_ execution. So you can submit
requests, and it can return a Job instance, etc.

## Test Plan

Run meta-reference-gpu using:
```bash
export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct
export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct-20250331210000
export MODEL_PARALLEL_SIZE=4
export MAX_BATCH_SIZE=32
export MAX_SEQ_LEN=6144

LLAMA_MODELS_DEBUG=1 llama stack run meta-reference-gpu
```

Then run the batch inference test case.
2025-04-12 11:41:12 -07:00
..
client-sdk/post_training feat: Add nemo customizer (#1448) 2025-03-25 11:01:10 -07:00
external-provider/llama-stack-provider-ollama feat: ability to execute external providers (#1672) 2025-04-09 10:30:41 +02:00
integration feat: add batch inference API to llama stack inference (#1945) 2025-04-12 11:41:12 -07:00
unit feat: Add unit tests for NVIDIA safety (#1897) 2025-04-11 11:49:55 -07:00
verifications test(verification): overwrite test result instead of creating new ones (#1934) 2025-04-10 16:59:28 -07:00
__init__.py refactor(test): introduce --stack-config and simplify options (#1404) 2025-03-05 17:02:02 -08:00