llama-stack/tests/client-sdk/vector_io/test_vector_io.py
Sixian Yi f4f47970e5
[client sdk test] add options for inference_model, safety_shield, embedding_model (#843)
# What does this PR do?
Default inference_model for testing: "meta-llama/Llama-3.1-8B-Instruct"
Default vision inference_model for testing:
"meta-llama/Llama-3.2-11B-Vision-Instruct"


## Test Plan
`/opt/miniconda3/envs/stack/bin/pytest -s -v
--inference-model=meta-llama/Llama-3.2-3B-Instruct
tests/client-sdk/agents`


`/opt/miniconda3/envs/stack/bin/pytest -s -v
--embedding-model=all-MiniLM-L6-v2 tests/client-sdk/vector_io`

`/opt/miniconda3/envs/stack/bin/pytest -s -v
--safety-shield=meta-llama/Llama-Guard-3-1B tests/client-sdk/safety`

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-22 15:35:19 -08:00

63 lines
2.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import random
def test_vector_db_retrieve(llama_stack_client, embedding_model):
# Register a memory bank first
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model,
embedding_dimension=384,
provider_id="faiss",
)
# Retrieve the memory bank and validate its properties
response = llama_stack_client.vector_dbs.retrieve(vector_db_id=vector_db_id)
assert response is not None
assert response.identifier == vector_db_id
assert response.embedding_model == embedding_model
assert response.provider_id == "faiss"
assert response.provider_resource_id == vector_db_id
def test_vector_db_list(llama_stack_client):
vector_dbs_after_register = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert len(vector_dbs_after_register) == 0
def test_vector_db_register(llama_stack_client, embedding_model):
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model,
embedding_dimension=384,
provider_id="faiss",
)
vector_dbs_after_register = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert vector_dbs_after_register == [vector_db_id]
def test_vector_db_unregister(llama_stack_client):
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert len(vector_dbs) == 1
vector_db_id = vector_dbs[0]
llama_stack_client.vector_dbs.unregister(vector_db_id=vector_db_id)
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert len(vector_dbs) == 0