Composable building blocks to build Llama Apps
Find a file
Andy Xie f5dae0517c
feat: Support ReAct Agent on Tools Playground (#2012)
# What does this PR do?
ReAct prompting attempts to use the Thinking, Action, Observation loop
to improve the model's reasoning ability via prompt engineering.

With this PR, it now supports the various features in Streamlit's
playground:
1. Adding the selection box for choosing between Agent Type: normal,
ReAct.
2. Adding the Thinking, Action, Observation loop streamlit logic for
ReAct agent, as seen in many LLM clients.
3. Improving tool calling accuracies via ReAct prompting, e.g. using
web_search.


**Folded**
![react_output_folded
png](https://github.com/user-attachments/assets/bf1bdce7-e6ef-455d-b6b0-c22a64e9d5c1)

**Collapsed**

![react_output_collapsed](https://github.com/user-attachments/assets/cda2fc17-df0b-400d-971c-988de821f2a4)

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Run the playground and uses reasoning prompts to see for yourself. Steps
to test the ReAct agent mode:
1. Setup a llama-stack server as
[getting_started](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html)
describes.
2. Setup your Web Search API keys under
`llama_stack/distribution/ui/modules/api.py`.
3. Run the streamlit playground and try ReAct agent, possibly with
`websearch`, with the command: `streamlit run
llama_stack/distribution/ui/app.py`.

## Test Process
Current results are demonstrated with `llama-3.2-3b-instruct`. Results
will vary with different models.

You should be seeing clear distinction with normal agent and ReAct
agent. Example prompts listed below:
1. Aside from the Apple Remote, what other devices can control the
program Apple Remote was originally designed to interact with?
2. What is the elevation range for the area that the eastern sector of
the Colorado orogeny extends into?

## Example Test Results

**Web search on AppleTV**
<img width="1440" alt="normal_output_appletv"
src="https://github.com/user-attachments/assets/bf6b3273-1c94-4976-8b4a-b2d82fe41330"
/>

<img width="1440" alt="react_output_appletv"
src="https://github.com/user-attachments/assets/687f1feb-88f4-4d32-93d5-5013d0d5fe25"
/>

**Web search on Colorado**
<img width="1440" alt="normal_output_colorado"
src="https://github.com/user-attachments/assets/10bd3ad4-f2ad-466d-9ce0-c66fccee40c1"
/>

<img width="1440" alt="react_output_colorado"
src="https://github.com/user-attachments/assets/39cfd82d-2be9-4e2f-9f90-a2c4840185f7"
/>

**Web search tool + MCP Slack server**
<img width="1250" alt="normal_output_search_slack png"
src="https://github.com/user-attachments/assets/72e88125-cdbf-4a90-bcb9-ab412c51d62d"
/>

<img width="1217" alt="react_output_search_slack"
src="https://github.com/user-attachments/assets/8ae04efb-a4fd-49f6-9465-37dbecb6b73e"
/>


![slack_screenshot](https://github.com/user-attachments/assets/bb70e669-6067-462a-bdf6-7aaac6ccbcef)
2025-04-25 17:01:51 +02:00
.github chore: Remove distributions/** from integration, external provider, and unit tests (#2018) 2025-04-24 11:39:31 -04:00
docs fix: specify nbformat version in nb (#2023) 2025-04-25 10:10:37 +02:00
llama_stack feat: Support ReAct Agent on Tools Playground (#2012) 2025-04-25 17:01:51 +02:00
rfcs chore: remove straggler references to llama-models (#1345) 2025-03-01 14:26:03 -08:00
scripts feat: allow building distro with external providers (#1967) 2025-04-18 17:18:28 +02:00
tests feat: NVIDIA allow non-llama model registration (#1859) 2025-04-24 17:13:33 -07:00
.gitignore build: remove .python-version (#1513) 2025-03-12 20:08:24 -07:00
.pre-commit-config.yaml fix: only invoke openapi generator if APIs or API generator changes (#1744) 2025-03-21 10:25:18 -04:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CHANGELOG.md docs: Add recent release notes (#1899) 2025-04-09 09:34:41 -04:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: Add link to integration tests instructions and minor clarification (#1838) 2025-03-31 11:37:42 +02:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in feat: introduce llama4 support (#1877) 2025-04-05 11:53:35 -07:00
pyproject.toml fix: properly handle streaming client disconnects (#2000) 2025-04-23 15:44:28 +02:00
README.md docs: Move Llama 4 instructions in a collapsed section (#1936) 2025-04-14 14:14:59 +02:00
requirements.txt fix: update llama stack client dependency 2025-04-12 18:14:33 -07:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock fix: properly handle streaming client disconnects (#2000) 2025-04-23 15:44:28 +02:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook

🎉 Llama 4 Support 🎉

We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.

👋 Click here to see how to run Llama 4 models on Llama Stack


Note you need 8xH100 GPU-host to run these models

pip install -U llama_stack

MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>

# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu

# install client to interact with the server
pip install llama-stack-client

CLI

# Run a chat completion
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"

ChatCompletionResponse(
    completion_message=CompletionMessage(content="Whispers in code born\nLlama's gentle, wise heartbeat\nFuture's soft unfold", role='assistant', stop_reason='end_of_turn', tool_calls=[]),
    logprobs=None,
    metrics=[Metric(metric='prompt_tokens', value=21.0, unit=None), Metric(metric='completion_tokens', value=28.0, unit=None), Metric(metric='total_tokens', value=49.0, unit=None)]
)

Python SDK

from llama_stack_client import LlamaStackClient

client = LlamaStackClient(base_url=f"http://localhost:8321")

model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"

print(f"User> {prompt}")
response = client.inference.chat_completion(
    model_id=model_id,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt},
    ],
)
print(f"Assistant> {response.completion_message.content}")

As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!

Overview

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
Meta Reference Quantized llamastack/distribution-meta-reference-quantized-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.