forked from phoenix-oss/llama-stack-mirror
# What does this PR do? current passthrough impl returns chatcompletion_message.content as a TextItem() , not a straight string. so it's not compatible with other providers, and causes parsing error downstream. change away from the generic pydantic conversion, and explicitly parse out content.text ## Test Plan setup llama server with passthrough ``` llama-stack-client eval run-benchmark "MMMU_Pro_standard" --model-id meta-llama/Llama-3-8B --output-dir /tmp/ --num-examples 20 ``` works without parsing error
221 lines
8 KiB
Python
221 lines
8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, AsyncGenerator, Dict, List, Optional
|
|
|
|
from llama_stack_client import AsyncLlamaStackClient
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionMessage,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.models import Model
|
|
from llama_stack.distribution.library_client import convert_pydantic_to_json_value, convert_to_pydantic
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
|
|
from .config import PassthroughImplConfig
|
|
|
|
|
|
class PassthroughInferenceAdapter(Inference):
|
|
def __init__(self, config: PassthroughImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, [])
|
|
self.config = config
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
return model
|
|
|
|
def _get_client(self) -> AsyncLlamaStackClient:
|
|
passthrough_url = None
|
|
passthrough_api_key = None
|
|
provider_data = None
|
|
|
|
if self.config.url is not None:
|
|
passthrough_url = self.config.url
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.passthrough_url:
|
|
raise ValueError(
|
|
'Pass url of the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_url": <your passthrough url>}'
|
|
)
|
|
passthrough_url = provider_data.passthrough_url
|
|
|
|
if self.config.api_key is not None:
|
|
passthrough_api_key = self.config.api_key.get_secret_value()
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.passthrough_api_key:
|
|
raise ValueError(
|
|
'Pass API Key for the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_api_key": <your api key>}'
|
|
)
|
|
passthrough_api_key = provider_data.passthrough_api_key
|
|
|
|
return AsyncLlamaStackClient(
|
|
base_url=passthrough_url,
|
|
api_key=passthrough_api_key,
|
|
provider_data=provider_data,
|
|
)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
client = self._get_client()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
request_params = {
|
|
"model_id": model.provider_resource_id,
|
|
"content": content,
|
|
"sampling_params": sampling_params,
|
|
"response_format": response_format,
|
|
"stream": stream,
|
|
"logprobs": logprobs,
|
|
}
|
|
|
|
request_params = {key: value for key, value in request_params.items() if value is not None}
|
|
|
|
# cast everything to json dict
|
|
json_params = self.cast_value_to_json_dict(request_params)
|
|
|
|
# only pass through the not None params
|
|
return await client.inference.completion(**json_params)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
# TODO: revisit this remove tool_calls from messages logic
|
|
for message in messages:
|
|
if hasattr(message, "tool_calls"):
|
|
message.tool_calls = None
|
|
|
|
request_params = {
|
|
"model_id": model.provider_resource_id,
|
|
"messages": messages,
|
|
"sampling_params": sampling_params,
|
|
"tools": tools,
|
|
"tool_choice": tool_choice,
|
|
"tool_prompt_format": tool_prompt_format,
|
|
"response_format": response_format,
|
|
"stream": stream,
|
|
"logprobs": logprobs,
|
|
}
|
|
|
|
# only pass through the not None params
|
|
request_params = {key: value for key, value in request_params.items() if value is not None}
|
|
|
|
# cast everything to json dict
|
|
json_params = self.cast_value_to_json_dict(request_params)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(json_params)
|
|
else:
|
|
return await self._nonstream_chat_completion(json_params)
|
|
|
|
async def _nonstream_chat_completion(self, json_params: Dict[str, Any]) -> ChatCompletionResponse:
|
|
client = self._get_client()
|
|
response = await client.inference.chat_completion(**json_params)
|
|
|
|
return ChatCompletionResponse(
|
|
completion_message=CompletionMessage(
|
|
content=response.completion_message.content.text,
|
|
stop_reason=response.completion_message.stop_reason,
|
|
tool_calls=response.completion_message.tool_calls,
|
|
),
|
|
logprobs=response.logprobs,
|
|
)
|
|
|
|
async def _stream_chat_completion(self, json_params: Dict[str, Any]) -> AsyncGenerator:
|
|
client = self._get_client()
|
|
stream_response = await client.inference.chat_completion(**json_params)
|
|
|
|
async for chunk in stream_response:
|
|
chunk = chunk.to_dict()
|
|
|
|
# temporary hack to remove the metrics from the response
|
|
chunk["metrics"] = []
|
|
chunk = convert_to_pydantic(ChatCompletionResponseStreamChunk, chunk)
|
|
yield chunk
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
client = self._get_client()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
return await client.inference.embeddings(
|
|
model_id=model.provider_resource_id,
|
|
contents=contents,
|
|
text_truncation=text_truncation,
|
|
output_dimension=output_dimension,
|
|
task_type=task_type,
|
|
)
|
|
|
|
def cast_value_to_json_dict(self, request_params: Dict[str, Any]) -> Dict[str, Any]:
|
|
json_params = {}
|
|
for key, value in request_params.items():
|
|
json_input = convert_pydantic_to_json_value(value)
|
|
if isinstance(json_input, dict):
|
|
json_input = {k: v for k, v in json_input.items() if v is not None}
|
|
elif isinstance(json_input, list):
|
|
json_input = [x for x in json_input if x is not None]
|
|
new_input = []
|
|
for x in json_input:
|
|
if isinstance(x, dict):
|
|
x = {k: v for k, v in x.items() if v is not None}
|
|
new_input.append(x)
|
|
json_input = new_input
|
|
|
|
json_params[key] = json_input
|
|
|
|
return json_params
|