forked from phoenix-oss/llama-stack-mirror
# What does this PR do? You are now able to run a training cycle on CPU. This is useful for debugging and testing purposes. [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan On a Mac machine without CUDA devices: ``` 17:00:24.417 [START] /v1/post-training/supervised-fine-tune DEBUG 2025-02-18 12:00:24,419 torchtune.utils._logging:60: Setting manual seed to local seed 3268931494. Local seed is seed + rank = 3268931494 + 0 INFO 2025-02-18 12:00:24,463 torchtune.utils._logging:64: Identified model_type = Llama3_2. Ignoring output.weight in checkpoint in favor of the tok_embedding.weight tied weights. INFO 2025-02-18 12:00:46,699 llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device:182: Model is initialized with precision torch.bfloat16. INFO 2025-02-18 12:00:46,784 llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device:185: Tokenizer is initialized. INFO 2025-02-18 12:00:46,786 llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device:188: Optimizer is initialized. INFO 2025-02-18 12:00:46,786 llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device:192: Loss is initialized. INFO 2025-02-18 12:00:48,997 llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device:209: Dataset and Sampler are initialized. INFO 2025-02-18 12:00:48,998 llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device:227: Learning rate scheduler is initialized. Writing logs to /Users/ihrachys/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/log_1739898049.txt 1|1|Loss: 1.7414989471435547: 100% 1/1 [03:46<00:00, 226.21s/it]INFO 2025-02-18 12:04:35,227 llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device:528: Starting checkpoint save... INFO 2025-02-18 12:04:49,974 torchtune.utils._logging:121: Model checkpoint of size 6.43 GB saved to /Users/ihrachys/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/consolidated.00.pth INFO 2025-02-18 12:04:49,981 torchtune.utils._logging:132: Adapter checkpoint of size 0.00 GB saved to /Users/ihrachys/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/adapter/adapter.pth model_file_path /Users/ihrachys/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0 1|1|Loss: 1.7414989471435547: 100% 1/1 [04:01<00:00, 241.18s/it] INFO: ::1:64990 - "POST /v1/post-training/supervised-fine-tune HTTP/1.1" 200 OK 17:04:50.364 [END] /v1/post-training/supervised-fine-tune [StatusCode.OK] (265947.01ms) 17:00:24.419 [DEBUG] Setting manual seed to local seed 3268931494. Local seed is seed + rank = 3268931494 + 0 17:00:24.463 [INFO] Identified model_type = Llama3_2. Ignoring output.weight in checkpoint in favor of the tok_embedding.weight tied weights. 17:00:46.700 [INFO] Model is initialized with precision torch.bfloat16. 17:00:46.784 [INFO] Tokenizer is initialized. 17:00:46.786 [INFO] Optimizer is initialized. 17:00:46.786 [INFO] Loss is initialized. 17:00:48.997 [INFO] Dataset and Sampler are initialized. 17:00:48.998 [INFO] Learning rate scheduler is initialized. 17:04:35.227 [INFO] Starting checkpoint save... 17:04:49.974 [INFO] Model checkpoint of size 6.43 GB saved to /Users/ihrachys/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/consolidated.00.pth 17:04:49.981 [INFO] Adapter checkpoint of size 0.00 GB saved to /Users/ihrachys/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/adapter/adapter.pth ``` [//]: # (## Documentation) Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com> |
||
---|---|---|
.. | ||
agents | ||
datasetio | ||
eval | ||
inference | ||
ios/inference | ||
post_training | ||
safety | ||
scoring | ||
telemetry | ||
tool_runtime | ||
vector_io | ||
__init__.py |