forked from phoenix-oss/llama-stack-mirror
This PR changes the way model id gets translated to the final model name that gets passed through the provider. Major changes include: 1) Providers are responsible for registering an object and as part of the registration returning the object with the correct provider specific name of the model provider_resource_id 2) To help with the common look ups different names a new ModelLookup class is created. Tested all inference providers including together, fireworks, vllm, ollama, meta reference and bedrock
222 lines
8 KiB
Python
222 lines
8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import logging
|
|
import os
|
|
import uuid
|
|
from typing import AsyncGenerator, Optional
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
from llama_models.sku_list import resolve_model
|
|
|
|
from vllm.engine.arg_utils import AsyncEngineArgs
|
|
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
|
from vllm.sampling_params import SamplingParams as VLLMSamplingParams
|
|
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
|
|
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
OpenAICompatCompletionChoice,
|
|
OpenAICompatCompletionResponse,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
)
|
|
|
|
from .config import VLLMConfig
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def _random_uuid() -> str:
|
|
return str(uuid.uuid4().hex)
|
|
|
|
|
|
class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
|
|
"""Inference implementation for vLLM."""
|
|
|
|
def __init__(self, config: VLLMConfig):
|
|
self.config = config
|
|
self.engine = None
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
|
|
async def initialize(self):
|
|
log.info("Initializing vLLM inference adapter")
|
|
|
|
# Disable usage stats reporting. This would be a surprising thing for most
|
|
# people to find out was on by default.
|
|
# https://docs.vllm.ai/en/latest/serving/usage_stats.html
|
|
if "VLLM_NO_USAGE_STATS" not in os.environ:
|
|
os.environ["VLLM_NO_USAGE_STATS"] = "1"
|
|
|
|
model = resolve_model(self.config.model)
|
|
if model is None:
|
|
raise ValueError(f"Unknown model {self.config.model}")
|
|
|
|
if model.huggingface_repo is None:
|
|
raise ValueError(f"Model {self.config.model} needs a huggingface repo")
|
|
|
|
# TODO -- there are a ton of options supported here ...
|
|
engine_args = AsyncEngineArgs(
|
|
model=model.huggingface_repo,
|
|
tokenizer=model.huggingface_repo,
|
|
tensor_parallel_size=self.config.tensor_parallel_size,
|
|
enforce_eager=self.config.enforce_eager,
|
|
gpu_memory_utilization=self.config.gpu_memory_utilization,
|
|
guided_decoding_backend="lm-format-enforcer",
|
|
)
|
|
|
|
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
|
|
|
|
async def shutdown(self):
|
|
"""Shutdown the vLLM inference adapter."""
|
|
log.info("Shutting down vLLM inference adapter")
|
|
if self.engine:
|
|
self.engine.shutdown_background_loop()
|
|
|
|
async def register_model(self, model: Model) -> None:
|
|
raise ValueError(
|
|
"You cannot dynamically add a model to a running vllm instance"
|
|
)
|
|
|
|
def _sampling_params(self, sampling_params: SamplingParams) -> VLLMSamplingParams:
|
|
if sampling_params is None:
|
|
return VLLMSamplingParams(max_tokens=self.config.max_tokens)
|
|
|
|
# TODO convert what I saw in my first test ... but surely there's more to do here
|
|
kwargs = {
|
|
"temperature": sampling_params.temperature,
|
|
"max_tokens": self.config.max_tokens,
|
|
}
|
|
if sampling_params.top_k:
|
|
kwargs["top_k"] = sampling_params.top_k
|
|
if sampling_params.top_p:
|
|
kwargs["top_p"] = sampling_params.top_p
|
|
if sampling_params.max_tokens:
|
|
kwargs["max_tokens"] = sampling_params.max_tokens
|
|
if sampling_params.repetition_penalty > 0:
|
|
kwargs["repetition_penalty"] = sampling_params.repetition_penalty
|
|
|
|
return VLLMSamplingParams(**kwargs)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedTextMedia,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> CompletionResponse | CompletionResponseStreamChunk:
|
|
log.info("vLLM completion")
|
|
messages = [UserMessage(content=content)]
|
|
return self.chat_completion(
|
|
model=model_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> ChatCompletionResponse | ChatCompletionResponseStreamChunk:
|
|
log.info("vLLM chat completion")
|
|
|
|
assert self.engine is not None
|
|
|
|
request = ChatCompletionRequest(
|
|
model=model_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
|
|
log.info("Sampling params: %s", sampling_params)
|
|
request_id = _random_uuid()
|
|
|
|
prompt = chat_completion_request_to_prompt(request, self.formatter)
|
|
vllm_sampling_params = self._sampling_params(request.sampling_params)
|
|
results_generator = self.engine.generate(
|
|
prompt, vllm_sampling_params, request_id
|
|
)
|
|
if stream:
|
|
return self._stream_chat_completion(request, results_generator)
|
|
else:
|
|
return await self._nonstream_chat_completion(request, results_generator)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest, results_generator: AsyncGenerator
|
|
) -> ChatCompletionResponse:
|
|
outputs = [o async for o in results_generator]
|
|
final_output = outputs[-1]
|
|
|
|
assert final_output is not None
|
|
outputs = final_output.outputs
|
|
finish_reason = outputs[-1].stop_reason
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=finish_reason,
|
|
text="".join([output.text for output in outputs]),
|
|
)
|
|
response = OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
return process_chat_completion_response(response, self.formatter)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest, results_generator: AsyncGenerator
|
|
) -> AsyncGenerator:
|
|
async def _generate_and_convert_to_openai_compat():
|
|
cur = []
|
|
async for chunk in results_generator:
|
|
if not chunk.outputs:
|
|
log.warning("Empty chunk received")
|
|
continue
|
|
|
|
output = chunk.outputs[-1]
|
|
|
|
new_tokens = output.token_ids[len(cur) :]
|
|
text = self.formatter.tokenizer.decode(new_tokens)
|
|
cur.extend(new_tokens)
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=output.finish_reason,
|
|
text=text,
|
|
)
|
|
yield OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_chat_completion_stream_response(
|
|
stream, self.formatter
|
|
):
|
|
yield chunk
|
|
|
|
async def embeddings(
|
|
self, model_id: str, contents: list[InterleavedTextMedia]
|
|
) -> EmbeddingsResponse:
|
|
log.info("vLLM embeddings")
|
|
# TODO
|
|
raise NotImplementedError()
|