forked from phoenix-oss/llama-stack-mirror
We should use Inference APIs to execute Llama Guard instead of directly needing to use HuggingFace modeling related code. The actual inference consideration is handled by Inference.
33 lines
943 B
Python
33 lines
943 B
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import List
|
|
|
|
from llama_models.datatypes import * # noqa: F403
|
|
from llama_models.sku_list import all_registered_models
|
|
|
|
|
|
def is_supported_safety_model(model: Model) -> bool:
|
|
if model.quantization_format != CheckpointQuantizationFormat.bf16:
|
|
return False
|
|
|
|
model_id = model.core_model_id
|
|
return model_id in [
|
|
CoreModelId.llama_guard_3_8b,
|
|
CoreModelId.llama_guard_3_1b,
|
|
CoreModelId.llama_guard_3_11b_vision,
|
|
]
|
|
|
|
|
|
def supported_inference_models() -> List[str]:
|
|
return [
|
|
m.descriptor()
|
|
for m in all_registered_models()
|
|
if (
|
|
m.model_family in {ModelFamily.llama3_1, ModelFamily.llama3_2}
|
|
or is_supported_safety_model(m)
|
|
)
|
|
]
|