Refactor codebase to implement MCP server for GPT Researcher
Replaced FastAPI app with an MCP server implementation, enhancing flexibility and modularity for research operations. Deprecated `phoenix_technologies` package, updated server logic, added utility functions, and revised dependencies in `requirements.txt`. Updated Dockerfile and README to align with the new architecture.
This commit is contained in:
parent
73e929ca00
commit
44b91b9375
10 changed files with 481 additions and 281 deletions
|
@ -22,4 +22,4 @@ COPY src/ /app/
|
|||
EXPOSE 8000
|
||||
|
||||
# Set the default command to run the app with `uvicorn`
|
||||
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
|
||||
CMD ["python", "server.py"]
|
223
README.md
223
README.md
|
@ -1,175 +1,72 @@
|
|||
# README for FastAPI-Based Report GPT Generation Service
|
||||
|
||||
## Overview
|
||||
|
||||
This repository contains the implementation of a **FastAPI**-based service designed to generate research reports. The service processes user-provided queries and report types, performing advanced research powered by `GPTResearcher` and responding with comprehensive results, including details, cost, context, images, and other associated metadata.
|
||||
|
||||
# Project Overview
|
||||
## Description
|
||||
This project is a server-side application built with Python that facilitates research-related operations. It provides functionalities to manage researchers, handle resources, process queries, and generate in-depth research reports. The application features reusable utility functions to streamline responses, handle exceptions gracefully, and format data for client consumption. A `Dockerfile` is provided for easy containerization and deployment.
|
||||
## Features
|
||||
### Server Functionality
|
||||
The main server functionalities are defined in `server.py`, which includes:
|
||||
- **research_resource**: Management of research resources.
|
||||
- **deep_research**: Conducts detailed research operations.
|
||||
- **write_report**: Creates comprehensive reports based on researched data.
|
||||
- **get_research_sources**: Retrieves information sources for research.
|
||||
- **get_research_context**: Provides contextual information tied to research.
|
||||
- **research_query**: Handles incoming research-related queries.
|
||||
- **run_server**: Initializes and runs the server.
|
||||
|
||||
- **RESTful API** to handle user queries and generate reports.
|
||||
- **Streaming responses** to deliver research output in chunks.
|
||||
- **Secure API access** with API Key authentication.
|
||||
- Completely containerized setup with Docker.
|
||||
- Built with modular design for easier scalability and maintenance.
|
||||
### Utility Functions
|
||||
The `utils.py` file provides additional support, including:
|
||||
- **Response Handling**:
|
||||
- `create_error_response`
|
||||
- `create_success_response`
|
||||
|
||||
---
|
||||
- **Error & Exception Management**:
|
||||
- `handle_exception`
|
||||
|
||||
## System Architecture
|
||||
- **Data Operations**:
|
||||
- `get_researcher_by_id`
|
||||
- `format_sources_for_response`
|
||||
- `format_context_with_sources`
|
||||
- `store_research_results`
|
||||
- `create_research_prompt`
|
||||
|
||||
### Core Components
|
||||
### Docker Support
|
||||
The included `Dockerfile` allows for simple containerized deployment:
|
||||
- Uses a lightweight Python 3.13 image.
|
||||
- Installs required dependencies from `requirements.txt`.
|
||||
- Configures the application to run via `server.py` on port `8000` using `CMD ["python", "server.py"]`.
|
||||
|
||||
1. **FastAPI App (`main.py`)**:
|
||||
- Hosts the API endpoints.
|
||||
- Handles API Key authentication for secure use.
|
||||
- Accepts user inputs (query and report type) and generates a chunked streaming response.
|
||||
## Setup and Usage
|
||||
### Prerequisites
|
||||
- Python 3.13 or later.
|
||||
- `pip` for dependency management.
|
||||
- Docker (optional, for containerized deployment).
|
||||
|
||||
2. **Research Logic (`deepresearch.py`)**:
|
||||
- Encapsulates research and report generation.
|
||||
- Utilizes `GPTResearcher` to conduct research, generate reports, and retrieve extended data like images, contexts, or costs.
|
||||
|
||||
3. **Docker Integration**:
|
||||
- The application is containerized with a well-defined `Dockerfile`.
|
||||
- Includes dependency installation, environment setup, and FastAPI server configuration for rapid deployment.
|
||||
|
||||
---
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before running the application, ensure the following are installed on your system:
|
||||
|
||||
- **Docker**: Version 24.0+
|
||||
- **Python**: Version 3.13+
|
||||
- **pip**: Pre-installed Python package manager.
|
||||
|
||||
---
|
||||
|
||||
## Running the Application Locally
|
||||
|
||||
### Cloning the Repository
|
||||
|
||||
Clone the repository to a directory of your choice:
|
||||
|
||||
```shell script
|
||||
git clone https://git.kvant.cloud/phoenix/gpt-researcher.git
|
||||
cd gpt-researcher
|
||||
### Installation
|
||||
1. Clone this repository.
|
||||
2. Install dependencies:
|
||||
``` bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Environment Variable Configuration
|
||||
|
||||
Create a `.env` file in the root of the project and define:
|
||||
|
||||
1. Run the application:
|
||||
``` bash
|
||||
python server.py
|
||||
```
|
||||
API_KEY=your_api_key # Replace "your_api_key" with your desired key
|
||||
OPENAI_BASE_URL=
|
||||
OPENAI_API_KEY=
|
||||
EMBEDDING=
|
||||
FAST_LLM=
|
||||
SMART_LLM=
|
||||
STRATEGIC_LLM=
|
||||
OPENAI_API_VERSION=
|
||||
SERPER_API_KEY=
|
||||
RETRIEVER=serper
|
||||
### Using Docker
|
||||
Build and run the application as a Docker container:
|
||||
1. Build the Docker image:
|
||||
``` bash
|
||||
docker build -t research-app .
|
||||
```
|
||||
|
||||
### Installing Dependencies
|
||||
|
||||
Install the required Python modules based on the generated `requirements.txt`.
|
||||
|
||||
```shell script
|
||||
pip install --no-cache-dir -r requirements.txt
|
||||
1. Run the Docker container:
|
||||
``` bash
|
||||
docker run -p 8000:8000 research-app
|
||||
```
|
||||
|
||||
### Running the App
|
||||
|
||||
Run the FastAPI app locally:
|
||||
|
||||
```shell script
|
||||
uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
The application will be accessible at `http://localhost:8000`.
|
||||
## Folder Structure
|
||||
```
|
||||
|-- src/
|
||||
|-- server.py # Main server logic
|
||||
|-- utils.py # Reusable utility functions
|
||||
|-- Dockerfile # Containerization setup
|
||||
|-- requirements.txt # Dependencies file
|
||||
|-- README.md # Documentation (this file)
|
||||
```
|
||||
|
||||
After running, your app will be available at `http://127.0.0.1:8000`.
|
||||
|
||||
---
|
||||
|
||||
## Using Docker for Deployment
|
||||
|
||||
### Building the Docker Image
|
||||
|
||||
Build the Docker image using the **Dockerfile** provided:
|
||||
|
||||
```shell script
|
||||
docker build -t fastapi-report-service .
|
||||
```
|
||||
|
||||
### Running the Docker Container
|
||||
|
||||
Spin up a container and map FastAPI's default port, `8000`:
|
||||
|
||||
```shell script
|
||||
docker run --env-file .env -p 8000:8000 fastapi-report-service
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## API Usage
|
||||
|
||||
### 1. **`/get_report`**
|
||||
|
||||
- **Method**: `POST`
|
||||
- **Description**: Generates a report based on user input.
|
||||
- **Headers**:
|
||||
- `X-API-KEY`: API Key for authentication.
|
||||
- **Request Body** (`JSON`):
|
||||
|
||||
```json
|
||||
{
|
||||
"query": "Research on AI in healthcare",
|
||||
"report_type": "research_report|resource_report|outline_report|custom_report|detailed_report|subtopic_report|deep"
|
||||
}
|
||||
```
|
||||
|
||||
- **Streaming Response**: Research and report are provided in chunks.
|
||||
|
||||
---
|
||||
|
||||
## Code Structure
|
||||
|
||||
```
|
||||
├── Dockerfile # Configuration for Dockerizing the application
|
||||
├── requirements.txt # Python dependencies list
|
||||
├── main.py # FastAPI server entry point
|
||||
├── deepresearch.py # Research-related logic and GPTResearcher integration
|
||||
└── src/ # Other project files and assets
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Features Under the Hood
|
||||
|
||||
1. **Authentication**:
|
||||
- An API key mechanism ensures that only authorized users can access endpoints.
|
||||
|
||||
2. **Streaming Response**:
|
||||
- Large research reports are sent incrementally using `StreamingResponse` for better experience and efficiency.
|
||||
|
||||
3. **Modular Research Logic**:
|
||||
- Research and generation tasks are handled by a dedicated class (`ReportGenerator`), making the application extensible.
|
||||
|
||||
---
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
- **Asynchronous Enhancements**:
|
||||
- Improve async handling for long-running queries.
|
||||
|
||||
- **Database Integration**:
|
||||
- Save request history for auditing and reference purposes.
|
||||
|
||||
- **Web Interface**:
|
||||
- A user-friendly web application for interacting with the API.
|
||||
|
||||
---
|
||||
|
||||
## Contributing
|
||||
|
||||
Contributions are welcome! Feel free to fork the repository, make updates, and submit a pull request.
|
|
@ -1,5 +1,12 @@
|
|||
fastapi
|
||||
uvicorn
|
||||
pydantic
|
||||
gpt-researcher
|
||||
asyncio
|
||||
# GPT Researcher dependencies
|
||||
gpt-researcher>=0.12.16
|
||||
python-dotenv
|
||||
|
||||
# MCP dependencies
|
||||
mcp>=1.6.0
|
||||
fastapi>=0.103.1
|
||||
uvicorn>=0.23.2
|
||||
pydantic>=2.3.0
|
||||
|
||||
# Utility dependencies
|
||||
loguru>=0.7.0
|
|
@ -0,0 +1,8 @@
|
|||
"""
|
||||
GPT Researcher MCP Server
|
||||
|
||||
This module provides an MCP server implementation for GPT Researcher,
|
||||
allowing AI assistants to perform web research and generate reports via the MCP protocol.
|
||||
"""
|
||||
|
||||
__version__ = "0.1.0"
|
55
src/main.py
55
src/main.py
|
@ -1,55 +0,0 @@
|
|||
import uvicorn
|
||||
from fastapi import FastAPI, HTTPException, Request, Depends
|
||||
from pydantic import BaseModel
|
||||
from phoenix_technologies import ReportGenerator, CustomLogsHandler
|
||||
from fastapi.responses import StreamingResponse
|
||||
from typing import Dict, Any, AsyncGenerator, Coroutine, Generator
|
||||
import os
|
||||
import asyncio
|
||||
import time
|
||||
|
||||
# FastAPI app instance
|
||||
app = FastAPI()
|
||||
|
||||
# Define a request body structure using Pydantic
|
||||
class ReportRequest(BaseModel):
|
||||
query: str
|
||||
report_type: str
|
||||
|
||||
# Shared log array using asyncio.Queue
|
||||
log_queue = asyncio.Queue()
|
||||
|
||||
# Define a dependency to validate the API Key
|
||||
def verify_api_key(request: Request):
|
||||
# Define the API key from the environment variables
|
||||
expected_api_key = os.getenv("API_KEY", None)
|
||||
if not expected_api_key:
|
||||
raise HTTPException(
|
||||
status_code=500, detail="API key is not configured on the server."
|
||||
)
|
||||
|
||||
# Get the API key from the request headers
|
||||
provided_api_key = request.headers.get("X-API-KEY", None)
|
||||
|
||||
# Check if the API key is correct
|
||||
if not provided_api_key or provided_api_key != expected_api_key:
|
||||
raise HTTPException(status_code=403, detail="Invalid or missing API key.")
|
||||
|
||||
|
||||
@app.post("/get_report", dependencies=[Depends(verify_api_key)])
|
||||
async def get_report_endpoint(request: ReportRequest):
|
||||
"""
|
||||
Expose the `get_report` function as a POST API endpoint, with a streaming response.
|
||||
"""
|
||||
|
||||
def fake_data_streamer():
|
||||
for i in range(5):
|
||||
yield f"My custom Log: {i}"
|
||||
time.sleep(5)
|
||||
|
||||
# Return streaming response
|
||||
return StreamingResponse(fake_data_streamer(), media_type="text/plain")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run(app='main:app', host="127.0.0.1", port=8000)
|
|
@ -1,4 +0,0 @@
|
|||
# phoenix-technologies/__init__.py
|
||||
from .gptresearch.deepresearch import ReportGenerator, CustomLogsHandler
|
||||
|
||||
__all__ = ["ReportGenerator", "CustomLogsHandler"]
|
|
@ -1,53 +0,0 @@
|
|||
from gpt_researcher import GPTResearcher
|
||||
from typing import Dict, Any, AsyncGenerator, Coroutine
|
||||
|
||||
|
||||
class CustomLogsHandler:
|
||||
"""A custom Logs handler class to handle JSON data."""
|
||||
def __init__(self):
|
||||
self.logs = [] # Initialize logs to store data
|
||||
|
||||
async def send_json(self, data: Dict[str, Any]) -> None:
|
||||
"""Send JSON data and log it."""
|
||||
self.logs.append(data) # Append data to logs
|
||||
print(f"My custom Log: {data}") # For demonstration, print the log
|
||||
|
||||
class ReportGenerator:
|
||||
def __init__(self, query: str, report_type: str):
|
||||
"""
|
||||
Initializes the ReportGenerator with a query and report type.
|
||||
"""
|
||||
self.query = query
|
||||
self.report_type = report_type
|
||||
# Initialize researcher with a custom WebSocket
|
||||
self.custom_logs_handler = CustomLogsHandler()
|
||||
self.complete = False
|
||||
|
||||
self.researcher = GPTResearcher(query, report_type, websocket=self.custom_logs_handler)
|
||||
|
||||
def init(self) -> CustomLogsHandler:
|
||||
return self.custom_logs_handler
|
||||
|
||||
async def generate_report(self) -> None:
|
||||
"""
|
||||
Conducts research and generates the report along with additional information.
|
||||
"""
|
||||
# Conduct research
|
||||
research_result = await self.researcher.conduct_research()
|
||||
report = await self.researcher.write_report()
|
||||
|
||||
# Retrieve additional information
|
||||
research_context = self.researcher.get_research_context()
|
||||
research_costs = self.researcher.get_costs()
|
||||
research_images = self.researcher.get_research_images()
|
||||
research_sources = self.researcher.get_research_sources()
|
||||
self.complete = True
|
||||
|
||||
def get_query_details(self):
|
||||
"""
|
||||
Returns details of the query and report type.
|
||||
"""
|
||||
return {
|
||||
"query": self.query,
|
||||
"report_type": self.report_type
|
||||
}
|
261
src/server.py
Normal file
261
src/server.py
Normal file
|
@ -0,0 +1,261 @@
|
|||
"""
|
||||
GPT Researcher MCP Server
|
||||
|
||||
This script implements an MCP server for GPT Researcher, allowing AI assistants
|
||||
to conduct web research and generate reports via the MCP protocol.
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
import logging
|
||||
from typing import Dict, Any, Optional
|
||||
from dotenv import load_dotenv
|
||||
from mcp.server.fastmcp import FastMCP
|
||||
from gpt_researcher import GPTResearcher
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
|
||||
from utils import (
|
||||
research_store,
|
||||
create_success_response,
|
||||
handle_exception,
|
||||
get_researcher_by_id,
|
||||
format_sources_for_response,
|
||||
format_context_with_sources,
|
||||
store_research_results,
|
||||
create_research_prompt
|
||||
)
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='[%(asctime)s][%(levelname)s] - %(message)s',
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Initialize FastMCP server
|
||||
mcp = FastMCP("GPT Researcher")
|
||||
|
||||
# Initialize researchers dictionary
|
||||
if not hasattr(mcp, "researchers"):
|
||||
mcp.researchers = {}
|
||||
|
||||
|
||||
@mcp.resource("research://{topic}")
|
||||
async def research_resource(topic: str) -> str:
|
||||
"""
|
||||
Provide research context for a given topic directly as a resource.
|
||||
|
||||
This allows LLMs to access web-sourced information without explicit function calls.
|
||||
|
||||
Args:
|
||||
topic: The research topic or query
|
||||
|
||||
Returns:
|
||||
String containing the research context with source information
|
||||
"""
|
||||
# Check if we've already researched this topic
|
||||
if topic in research_store:
|
||||
logger.info(f"Returning cached research for topic: {topic}")
|
||||
return research_store[topic]["context"]
|
||||
|
||||
# If not, conduct the research
|
||||
logger.info(f"Conducting new research for resource on topic: {topic}")
|
||||
|
||||
# Initialize GPT Researcher
|
||||
researcher = GPTResearcher(topic)
|
||||
|
||||
try:
|
||||
# Conduct the research
|
||||
await researcher.conduct_research()
|
||||
|
||||
# Get the context and sources
|
||||
context = researcher.get_research_context()
|
||||
sources = researcher.get_research_sources()
|
||||
source_urls = researcher.get_source_urls()
|
||||
|
||||
# Format with sources included
|
||||
formatted_context = format_context_with_sources(topic, context, sources)
|
||||
|
||||
# Store for future use
|
||||
store_research_results(topic, context, sources, source_urls, formatted_context)
|
||||
|
||||
return formatted_context
|
||||
except Exception as e:
|
||||
return f"Error conducting research on '{topic}': {str(e)}"
|
||||
|
||||
|
||||
@mcp.tool()
|
||||
async def deep_research(query: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Conduct a deep web research on a given query using GPT Researcher.
|
||||
Use this tool when you need time-sensitive, real-time information like stock prices, news, people, specific knowledge, etc.
|
||||
You must include citations that back your responses when using this tool.
|
||||
|
||||
Args:
|
||||
query: The research query or topic
|
||||
|
||||
Returns:
|
||||
Dict containing research status, ID, and the actual research context and sources
|
||||
that can be used directly by LLMs for context enrichment
|
||||
"""
|
||||
logger.info(f"Conducting research on query: {query}...")
|
||||
|
||||
# Generate a unique ID for this research session
|
||||
research_id = str(uuid.uuid4())
|
||||
|
||||
# Initialize GPT Researcher
|
||||
researcher = GPTResearcher(query)
|
||||
|
||||
# Start research
|
||||
try:
|
||||
await researcher.conduct_research()
|
||||
mcp.researchers[research_id] = researcher
|
||||
logger.info(f"Research completed for ID: {research_id}")
|
||||
|
||||
# Get the research context and sources
|
||||
context = researcher.get_research_context()
|
||||
sources = researcher.get_research_sources()
|
||||
source_urls = researcher.get_source_urls()
|
||||
|
||||
# Store in the research store for the resource API
|
||||
store_research_results(query, context, sources, source_urls)
|
||||
|
||||
return create_success_response({
|
||||
"research_id": research_id,
|
||||
"query": query,
|
||||
"source_count": len(sources),
|
||||
"context": context,
|
||||
"sources": format_sources_for_response(sources),
|
||||
"source_urls": source_urls
|
||||
})
|
||||
except Exception as e:
|
||||
return handle_exception(e, "Research")
|
||||
|
||||
|
||||
@mcp.tool()
|
||||
async def write_report(research_id: str, custom_prompt: Optional[str] = None) -> Dict[str, Any]:
|
||||
"""
|
||||
Generate a report based on previously conducted research.
|
||||
|
||||
Args:
|
||||
research_id: The ID of the research session from conduct_research
|
||||
custom_prompt: Optional custom prompt for report generation
|
||||
|
||||
Returns:
|
||||
Dict containing the report content and metadata
|
||||
"""
|
||||
success, researcher, error = get_researcher_by_id(mcp.researchers, research_id)
|
||||
if not success:
|
||||
return error
|
||||
|
||||
logger.info(f"Generating report for research ID: {research_id}")
|
||||
|
||||
try:
|
||||
# Generate report
|
||||
report = await researcher.write_report(custom_prompt=custom_prompt)
|
||||
|
||||
# Get additional information
|
||||
sources = researcher.get_research_sources()
|
||||
costs = researcher.get_costs()
|
||||
|
||||
return create_success_response({
|
||||
"report": report,
|
||||
"source_count": len(sources),
|
||||
"costs": costs
|
||||
})
|
||||
except Exception as e:
|
||||
return handle_exception(e, "Report generation")
|
||||
|
||||
|
||||
@mcp.tool()
|
||||
async def get_research_sources(research_id: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Get the sources used in the research.
|
||||
|
||||
Args:
|
||||
research_id: The ID of the research session
|
||||
|
||||
Returns:
|
||||
Dict containing the research sources
|
||||
"""
|
||||
success, researcher, error = get_researcher_by_id(mcp.researchers, research_id)
|
||||
if not success:
|
||||
return error
|
||||
|
||||
sources = researcher.get_research_sources()
|
||||
source_urls = researcher.get_source_urls()
|
||||
|
||||
return create_success_response({
|
||||
"sources": format_sources_for_response(sources),
|
||||
"source_urls": source_urls
|
||||
})
|
||||
|
||||
|
||||
@mcp.tool()
|
||||
async def get_research_context(research_id: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Get the full context of the research.
|
||||
|
||||
Args:
|
||||
research_id: The ID of the research session
|
||||
|
||||
Returns:
|
||||
Dict containing the research context
|
||||
"""
|
||||
success, researcher, error = get_researcher_by_id(mcp.researchers, research_id)
|
||||
if not success:
|
||||
return error
|
||||
|
||||
context = researcher.get_research_context()
|
||||
|
||||
return create_success_response({
|
||||
"context": context
|
||||
})
|
||||
|
||||
|
||||
@mcp.prompt()
|
||||
def research_query(topic: str, goal: str, report_format: str = "research_report") -> str:
|
||||
"""
|
||||
Create a research query prompt for GPT Researcher.
|
||||
|
||||
Args:
|
||||
topic: The topic to research
|
||||
goal: The goal or specific question to answer
|
||||
report_format: The format of the report to generate
|
||||
|
||||
Returns:
|
||||
A formatted prompt for research
|
||||
"""
|
||||
return create_research_prompt(topic, goal, report_format)
|
||||
|
||||
|
||||
def run_server():
|
||||
"""Run the MCP server using FastMCP's built-in event loop handling."""
|
||||
# Check if API keys are set
|
||||
if not os.getenv("OPENAI_API_KEY"):
|
||||
logger.error("OPENAI_API_KEY not found. Please set it in your .env file.")
|
||||
return
|
||||
|
||||
# Add startup message
|
||||
logger.info("Starting GPT Researcher MCP Server...")
|
||||
print("🚀 GPT Researcher MCP Server starting... Check researcher_mcp_server.log for details")
|
||||
|
||||
# Let FastMCP handle the event loop
|
||||
try:
|
||||
mcp.run("sse")
|
||||
# Note: If we reach here, the server has stopped
|
||||
logger.info("MCP Server has stopped")
|
||||
except Exception as e:
|
||||
logger.error(f"Error running MCP server: {str(e)}")
|
||||
print(f"❌ MCP Server error: {str(e)}")
|
||||
return
|
||||
|
||||
print("✅ MCP Server stopped")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Use the non-async approach to avoid asyncio nesting issues
|
||||
run_server()
|
139
src/utils.py
Normal file
139
src/utils.py
Normal file
|
@ -0,0 +1,139 @@
|
|||
"""
|
||||
GPT Researcher MCP Server Utilities
|
||||
|
||||
This module provides utility functions and helpers for the GPT Researcher MCP Server.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from typing import Dict, List, Optional, Tuple, Any
|
||||
from loguru import logger
|
||||
|
||||
# Configure logging for console only (no file logging)
|
||||
logger.configure(handlers=[{"sink": sys.stderr, "level": "INFO"}])
|
||||
|
||||
# Research store to track ongoing research topics and contexts
|
||||
research_store = {}
|
||||
|
||||
# API Response Utilities
|
||||
def create_error_response(message: str) -> Dict[str, Any]:
|
||||
"""Create a standardized error response"""
|
||||
return {"status": "error", "message": message}
|
||||
|
||||
|
||||
def create_success_response(data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Create a standardized success response"""
|
||||
return {"status": "success", **data}
|
||||
|
||||
|
||||
def handle_exception(e: Exception, operation: str) -> Dict[str, Any]:
|
||||
"""Handle exceptions in a consistent way"""
|
||||
error_message = str(e)
|
||||
logger.error(f"{operation} failed: {error_message}")
|
||||
return create_error_response(error_message)
|
||||
|
||||
|
||||
def get_researcher_by_id(researchers_dict: Dict, research_id: str) -> Tuple[bool, Any, Dict[str, Any]]:
|
||||
"""
|
||||
Helper function to retrieve a researcher by ID.
|
||||
|
||||
Args:
|
||||
researchers_dict: Dictionary of research objects
|
||||
research_id: The ID of the research session
|
||||
|
||||
Returns:
|
||||
Tuple containing (success, researcher_object, error_response)
|
||||
"""
|
||||
if not researchers_dict or research_id not in researchers_dict:
|
||||
return False, None, create_error_response("Research ID not found. Please conduct research first.")
|
||||
return True, researchers_dict[research_id], {}
|
||||
|
||||
|
||||
def format_sources_for_response(sources: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Format source information for API responses.
|
||||
|
||||
Args:
|
||||
sources: List of source dictionaries
|
||||
|
||||
Returns:
|
||||
Formatted source list for API responses
|
||||
"""
|
||||
return [
|
||||
{
|
||||
"title": source.get("title", "Unknown"),
|
||||
"url": source.get("url", ""),
|
||||
"content_length": len(source.get("content", ""))
|
||||
}
|
||||
for source in sources
|
||||
]
|
||||
|
||||
|
||||
def format_context_with_sources(topic: str, context: str, sources: List[Dict[str, Any]]) -> str:
|
||||
"""
|
||||
Format research context with sources for display.
|
||||
|
||||
Args:
|
||||
topic: Research topic
|
||||
context: Research context
|
||||
sources: List of sources
|
||||
|
||||
Returns:
|
||||
Formatted context string with sources
|
||||
"""
|
||||
formatted_context = f"## Research: {topic}\n\n{context}\n\n"
|
||||
formatted_context += "## Sources:\n"
|
||||
for i, source in enumerate(sources):
|
||||
formatted_context += f"{i+1}. {source.get('title', 'Unknown')}: {source.get('url', '')}\n"
|
||||
return formatted_context
|
||||
|
||||
|
||||
def store_research_results(topic: str, context: str, sources: List[Dict[str, Any]],
|
||||
source_urls: List[str], formatted_context: Optional[str] = None):
|
||||
"""
|
||||
Store research results in the research store.
|
||||
|
||||
Args:
|
||||
topic: Research topic
|
||||
context: Research context
|
||||
sources: List of sources
|
||||
source_urls: List of source URLs
|
||||
formatted_context: Optional pre-formatted context
|
||||
"""
|
||||
research_store[topic] = {
|
||||
"context": formatted_context or context,
|
||||
"sources": sources,
|
||||
"source_urls": source_urls
|
||||
}
|
||||
|
||||
|
||||
def create_research_prompt(topic: str, goal: str, report_format: str = "research_report") -> str:
|
||||
"""
|
||||
Create a research query prompt for GPT Researcher.
|
||||
|
||||
Args:
|
||||
topic: The topic to research
|
||||
goal: The goal or specific question to answer
|
||||
report_format: The format of the report to generate
|
||||
|
||||
Returns:
|
||||
A formatted prompt for research
|
||||
"""
|
||||
return f"""
|
||||
Please research the following topic: {topic}
|
||||
|
||||
Goal: {goal}
|
||||
|
||||
You have two methods to access web-sourced information:
|
||||
|
||||
1. Use the "research://{topic}" resource to directly access context about this topic if it exists
|
||||
or if you want to get straight to the information without tracking a research ID.
|
||||
|
||||
2. Use the conduct_research tool to perform new research and get a research_id for later use.
|
||||
This tool also returns the context directly in its response, which you can use immediately.
|
||||
|
||||
After getting context, you can:
|
||||
- Use it directly in your response
|
||||
- Use the write_report tool with a custom prompt to generate a structured {report_format}
|
||||
|
||||
You can also use get_research_sources to view additional details about the information sources.
|
||||
"""
|
Loading…
Add table
Add a link
Reference in a new issue