Introduce research resource API and improve research caching

Add a `research://{topic}` resource endpoint for direct access to research context, reducing redundant API calls. Introduced `research_store` for caching research results and modularized helper methods like `store_research_results` and `format_context_with_sources` for better reusability and clarity. Refactored existing researcher initialization for simplicity and improved comments to clarify intended usage.
This commit is contained in:
ThomasTaroni 2025-05-31 23:54:51 +02:00
parent ba48f44321
commit b1ad64cd75
2 changed files with 98 additions and 17 deletions

View file

@ -18,10 +18,13 @@ from gpt_researcher import GPTResearcher
load_dotenv()
from utils import (
research_store,
create_success_response,
handle_exception,
get_researcher_by_id,
format_sources_for_response,
format_context_with_sources,
store_research_results,
create_research_prompt
)
@ -33,30 +36,62 @@ logging.basicConfig(
logger = logging.getLogger(__name__)
# Initialize FastMCP server
mcp = FastMCP("GPT Researcher", host="0.0.0.0", port=8000, timeout_keep_alive=720)
research_type = os.getenv("RESEARCH_TYPE", "deep")
mcp = FastMCP("GPT Researcher")
# Initialize researchers dictionary
if not hasattr(mcp, "researchers"):
mcp.researchers = {}
class CustomLogsHandler:
"""A custom Logs handler class to handle JSON data."""
def __init__(self):
self.logs = [] # Initialize logs to store data
@mcp.resource("research://{topic}")
async def research_resource(topic: str) -> str:
"""
Provide research context for a given topic directly as a resource.
async def send_json(self, data: Dict[str, Any]) -> None:
"""Send JSON data and log it."""
self.logs.append(data) # Append data to logs
print(f"MCP Log: {data}") # For demonstration, print the log
This allows LLMs to access web-sourced information without explicit function calls.
Args:
topic: The research topic or query
Returns:
String containing the research context with source information
"""
# Check if we've already researched this topic
if topic in research_store:
logger.info(f"Returning cached research for topic: {topic}")
return research_store[topic]["context"]
# If not, conduct the research
logger.info(f"Conducting new research for resource on topic: {topic}")
# Initialize GPT Researcher
researcher = GPTResearcher(topic)
try:
# Conduct the research
await researcher.conduct_research()
# Get the context and sources
context = researcher.get_research_context()
sources = researcher.get_research_sources()
source_urls = researcher.get_source_urls()
# Format with sources included
formatted_context = format_context_with_sources(topic, context, sources)
# Store for future use
store_research_results(topic, context, sources, source_urls, formatted_context)
return formatted_context
except Exception as e:
return f"Error conducting research on '{topic}': {str(e)}"
@mcp.tool()
async def deep_research(query: str) -> Dict[str, Any]:
"""
Conduct a web deep research on a given query using GPT Researcher.
Use this tool when you need a deep research on a topic.
Use this tool when you need time-sensitive, real-time information like stock prices, news, people, specific knowledge, etc.
Args:
query: The research query or topic
@ -69,10 +104,9 @@ async def deep_research(query: str) -> Dict[str, Any]:
# Generate a unique ID for this research session
research_id = str(uuid.uuid4())
custom_logs_handler = CustomLogsHandler()
# Initialize GPT Researcher
researcher = GPTResearcher(query=query, report_type=research_type, websocket=custom_logs_handler)
researcher = GPTResearcher(query)
# Start research
try:
@ -85,6 +119,9 @@ async def deep_research(query: str) -> Dict[str, Any]:
sources = researcher.get_research_sources()
source_urls = researcher.get_source_urls()
# Store in the research store for the resource API
store_research_results(query, context, sources, source_urls)
return create_success_response({
"research_id": research_id,
"query": query,
@ -101,7 +138,8 @@ async def deep_research(query: str) -> Dict[str, Any]:
async def quick_search(query: str) -> Dict[str, Any]:
"""
Perform a quick web search on a given query and return search results with snippets.
Use this tool when you need a quick research on a topic.
This optimizes for speed over quality and is useful when an LLM doesn't need in-depth
information on a topic.
Args:
query: The search query
@ -113,9 +151,9 @@ async def quick_search(query: str) -> Dict[str, Any]:
# Generate a unique ID for this search session
search_id = str(uuid.uuid4())
custom_logs_handler = CustomLogsHandler()
# Initialize GPT Researcher
researcher = GPTResearcher(query=query, report_type=research_type, websocket=custom_logs_handler)
researcher = GPTResearcher(query)
try:
# Perform quick search

View file

@ -11,6 +11,8 @@ from loguru import logger
# Configure logging for console only (no file logging)
logger.configure(handlers=[{"sink": sys.stderr, "level": "INFO"}])
# Research store to track ongoing research topics and contexts
research_store = {}
# API Response Utilities
def create_error_response(message: str) -> Dict[str, Any]:
@ -66,6 +68,44 @@ def format_sources_for_response(sources: List[Dict[str, Any]]) -> List[Dict[str,
]
def format_context_with_sources(topic: str, context: str, sources: List[Dict[str, Any]]) -> str:
"""
Format research context with sources for display.
Args:
topic: Research topic
context: Research context
sources: List of sources
Returns:
Formatted context string with sources
"""
formatted_context = f"## Research: {topic}\n\n{context}\n\n"
formatted_context += "## Sources:\n"
for i, source in enumerate(sources):
formatted_context += f"{i+1}. {source.get('title', 'Unknown')}: {source.get('url', '')}\n"
return formatted_context
def store_research_results(topic: str, context: str, sources: List[Dict[str, Any]],
source_urls: List[str], formatted_context: Optional[str] = None):
"""
Store research results in the research store.
Args:
topic: Research topic
context: Research context
sources: List of sources
source_urls: List of source URLs
formatted_context: Optional pre-formatted context
"""
research_store[topic] = {
"context": formatted_context or context,
"sources": sources,
"source_urls": source_urls
}
def create_research_prompt(topic: str, goal: str, report_format: str = "research_report") -> str:
"""
Create a research query prompt for GPT Researcher.
@ -85,7 +125,10 @@ def create_research_prompt(topic: str, goal: str, report_format: str = "research
You have two methods to access web-sourced information:
Use the conduct_research tool to perform new research and get a research_id for later use.
1. Use the "research://{topic}" resource to directly access context about this topic if it exists
or if you want to get straight to the information without tracking a research ID.
2. Use the conduct_research tool to perform new research and get a research_id for later use.
This tool also returns the context directly in its response, which you can use immediately.
After getting context, you can: