mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
fix(caching.py): dual cache async_batch_get_cache fix + testing
this fixes a bug in usage-based-routing-v2 which was caused b/c of how the result was being returned from dual cache async_batch_get_cache. it also adds unit testing for that function (and it's sync equivalent)
This commit is contained in:
parent
3c6b6355c7
commit
01a1a8f731
8 changed files with 149 additions and 10 deletions
|
@ -1216,7 +1216,7 @@ class DualCache(BaseCache):
|
||||||
self.in_memory_cache.set_cache(key, redis_result[key], **kwargs)
|
self.in_memory_cache.set_cache(key, redis_result[key], **kwargs)
|
||||||
|
|
||||||
for key, value in redis_result.items():
|
for key, value in redis_result.items():
|
||||||
result[sublist_keys.index(key)] = value
|
result[keys.index(key)] = value
|
||||||
|
|
||||||
print_verbose(f"async batch get cache: cache result: {result}")
|
print_verbose(f"async batch get cache: cache result: {result}")
|
||||||
return result
|
return result
|
||||||
|
@ -1266,7 +1266,6 @@ class DualCache(BaseCache):
|
||||||
keys, **kwargs
|
keys, **kwargs
|
||||||
)
|
)
|
||||||
|
|
||||||
print_verbose(f"in_memory_result: {in_memory_result}")
|
|
||||||
if in_memory_result is not None:
|
if in_memory_result is not None:
|
||||||
result = in_memory_result
|
result = in_memory_result
|
||||||
if None in result and self.redis_cache is not None and local_only == False:
|
if None in result and self.redis_cache is not None and local_only == False:
|
||||||
|
@ -1290,9 +1289,9 @@ class DualCache(BaseCache):
|
||||||
key, redis_result[key], **kwargs
|
key, redis_result[key], **kwargs
|
||||||
)
|
)
|
||||||
for key, value in redis_result.items():
|
for key, value in redis_result.items():
|
||||||
result[sublist_keys.index(key)] = value
|
index = keys.index(key)
|
||||||
|
result[index] = value
|
||||||
|
|
||||||
print_verbose(f"async batch get cache: cache result: {result}")
|
|
||||||
return result
|
return result
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
|
|
|
@ -152,7 +152,6 @@ class PrometheusServicesLogger:
|
||||||
if self.mock_testing:
|
if self.mock_testing:
|
||||||
self.mock_testing_success_calls += 1
|
self.mock_testing_success_calls += 1
|
||||||
|
|
||||||
print(f"LOGS SUCCESSFUL CALL TO PROMETHEUS - payload={payload}")
|
|
||||||
if payload.service.value in self.payload_to_prometheus_map:
|
if payload.service.value in self.payload_to_prometheus_map:
|
||||||
prom_objects = self.payload_to_prometheus_map[payload.service.value]
|
prom_objects = self.payload_to_prometheus_map[payload.service.value]
|
||||||
for obj in prom_objects:
|
for obj in prom_objects:
|
||||||
|
|
|
@ -3,8 +3,16 @@ model_list:
|
||||||
litellm_params:
|
litellm_params:
|
||||||
model: openai/my-fake-model
|
model: openai/my-fake-model
|
||||||
api_key: my-fake-key
|
api_key: my-fake-key
|
||||||
# api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
|
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
|
||||||
api_base: http://0.0.0.0:8080
|
# api_base: http://0.0.0.0:8080
|
||||||
|
stream_timeout: 0.001
|
||||||
|
rpm: 10
|
||||||
|
- model_name: fake-openai-endpoint
|
||||||
|
litellm_params:
|
||||||
|
model: openai/my-fake-model-2
|
||||||
|
api_key: my-fake-key
|
||||||
|
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
|
||||||
|
# api_base: http://0.0.0.0:8080
|
||||||
stream_timeout: 0.001
|
stream_timeout: 0.001
|
||||||
rpm: 10
|
rpm: 10
|
||||||
- litellm_params:
|
- litellm_params:
|
||||||
|
@ -33,9 +41,7 @@ litellm_settings:
|
||||||
|
|
||||||
router_settings:
|
router_settings:
|
||||||
routing_strategy: usage-based-routing-v2
|
routing_strategy: usage-based-routing-v2
|
||||||
redis_host: os.environ/REDIS_HOST
|
redis_url: "rediss://:073f655645b843c4839329aea8384e68@us1-great-lizard-40486.upstash.io:40486/0"
|
||||||
redis_password: os.environ/REDIS_PASSWORD
|
|
||||||
redis_port: os.environ/REDIS_PORT
|
|
||||||
enable_pre_call_checks: True
|
enable_pre_call_checks: True
|
||||||
|
|
||||||
general_settings:
|
general_settings:
|
||||||
|
|
|
@ -187,6 +187,7 @@ class LowestTPMLoggingHandler_v2(CustomLogger):
|
||||||
request=httpx.Request(method="tpm_rpm_limits", url="https://github.com/BerriAI/litellm"), # type: ignore
|
request=httpx.Request(method="tpm_rpm_limits", url="https://github.com/BerriAI/litellm"), # type: ignore
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
return deployment
|
return deployment
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if isinstance(e, litellm.RateLimitError):
|
if isinstance(e, litellm.RateLimitError):
|
||||||
|
|
|
@ -33,6 +33,51 @@ def generate_random_word(length=4):
|
||||||
messages = [{"role": "user", "content": "who is ishaan 5222"}]
|
messages = [{"role": "user", "content": "who is ishaan 5222"}]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_dual_cache_async_batch_get_cache():
|
||||||
|
"""
|
||||||
|
Unit testing for Dual Cache async_batch_get_cache()
|
||||||
|
- 2 item query
|
||||||
|
- in_memory result has a partial hit (1/2)
|
||||||
|
- hit redis for the other -> expect to return None
|
||||||
|
- expect result = [in_memory_result, None]
|
||||||
|
"""
|
||||||
|
from litellm.caching import DualCache, InMemoryCache, RedisCache
|
||||||
|
|
||||||
|
in_memory_cache = InMemoryCache()
|
||||||
|
redis_cache = RedisCache() # get credentials from environment
|
||||||
|
dual_cache = DualCache(in_memory_cache=in_memory_cache, redis_cache=redis_cache)
|
||||||
|
|
||||||
|
in_memory_cache.set_cache(key="test_value", value="hello world")
|
||||||
|
|
||||||
|
result = await dual_cache.async_batch_get_cache(keys=["test_value", "test_value_2"])
|
||||||
|
|
||||||
|
assert result[0] == "hello world"
|
||||||
|
assert result[1] == None
|
||||||
|
|
||||||
|
|
||||||
|
def test_dual_cache_batch_get_cache():
|
||||||
|
"""
|
||||||
|
Unit testing for Dual Cache batch_get_cache()
|
||||||
|
- 2 item query
|
||||||
|
- in_memory result has a partial hit (1/2)
|
||||||
|
- hit redis for the other -> expect to return None
|
||||||
|
- expect result = [in_memory_result, None]
|
||||||
|
"""
|
||||||
|
from litellm.caching import DualCache, InMemoryCache, RedisCache
|
||||||
|
|
||||||
|
in_memory_cache = InMemoryCache()
|
||||||
|
redis_cache = RedisCache() # get credentials from environment
|
||||||
|
dual_cache = DualCache(in_memory_cache=in_memory_cache, redis_cache=redis_cache)
|
||||||
|
|
||||||
|
in_memory_cache.set_cache(key="test_value", value="hello world")
|
||||||
|
|
||||||
|
result = dual_cache.batch_get_cache(keys=["test_value", "test_value_2"])
|
||||||
|
|
||||||
|
assert result[0] == "hello world"
|
||||||
|
assert result[1] == None
|
||||||
|
|
||||||
|
|
||||||
# @pytest.mark.skip(reason="")
|
# @pytest.mark.skip(reason="")
|
||||||
def test_caching_dynamic_args(): # test in memory cache
|
def test_caching_dynamic_args(): # test in memory cache
|
||||||
try:
|
try:
|
||||||
|
|
|
@ -23,6 +23,10 @@ from litellm.caching import DualCache
|
||||||
|
|
||||||
### UNIT TESTS FOR TPM/RPM ROUTING ###
|
### UNIT TESTS FOR TPM/RPM ROUTING ###
|
||||||
|
|
||||||
|
"""
|
||||||
|
- Given 2 deployments, make sure it's shuffling deployments correctly.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
def test_tpm_rpm_updated():
|
def test_tpm_rpm_updated():
|
||||||
test_cache = DualCache()
|
test_cache = DualCache()
|
||||||
|
|
|
@ -55,6 +55,20 @@ model_list:
|
||||||
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
|
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
|
||||||
stream_timeout: 0.001
|
stream_timeout: 0.001
|
||||||
rpm: 1
|
rpm: 1
|
||||||
|
- model_name: fake-openai-endpoint-3
|
||||||
|
litellm_params:
|
||||||
|
model: openai/my-fake-model
|
||||||
|
api_key: my-fake-key
|
||||||
|
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
|
||||||
|
stream_timeout: 0.001
|
||||||
|
rpm: 10
|
||||||
|
- model_name: fake-openai-endpoint-3
|
||||||
|
litellm_params:
|
||||||
|
model: openai/my-fake-model-2
|
||||||
|
api_key: my-fake-key
|
||||||
|
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
|
||||||
|
stream_timeout: 0.001
|
||||||
|
rpm: 10
|
||||||
- model_name: "*"
|
- model_name: "*"
|
||||||
litellm_params:
|
litellm_params:
|
||||||
model: openai/*
|
model: openai/*
|
||||||
|
|
|
@ -102,6 +102,47 @@ async def chat_completion(session, key, model="gpt-4"):
|
||||||
return await response.json()
|
return await response.json()
|
||||||
|
|
||||||
|
|
||||||
|
async def chat_completion_with_headers(session, key, model="gpt-4"):
|
||||||
|
url = "http://0.0.0.0:4000/chat/completions"
|
||||||
|
headers = {
|
||||||
|
"Authorization": f"Bearer {key}",
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
}
|
||||||
|
data = {
|
||||||
|
"model": model,
|
||||||
|
"messages": [
|
||||||
|
{"role": "system", "content": "You are a helpful assistant."},
|
||||||
|
{"role": "user", "content": "Hello!"},
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
async with session.post(url, headers=headers, json=data) as response:
|
||||||
|
status = response.status
|
||||||
|
response_text = await response.text()
|
||||||
|
|
||||||
|
print(response_text)
|
||||||
|
print()
|
||||||
|
|
||||||
|
if status != 200:
|
||||||
|
raise Exception(f"Request did not return a 200 status code: {status}")
|
||||||
|
|
||||||
|
response_header_check(
|
||||||
|
response
|
||||||
|
) # calling the function to check response headers
|
||||||
|
|
||||||
|
raw_headers = response.raw_headers
|
||||||
|
raw_headers_json = {}
|
||||||
|
|
||||||
|
for (
|
||||||
|
item
|
||||||
|
) in (
|
||||||
|
response.raw_headers
|
||||||
|
): # ((b'date', b'Fri, 19 Apr 2024 21:17:29 GMT'), (), )
|
||||||
|
raw_headers_json[item[0].decode("utf-8")] = item[1].decode("utf-8")
|
||||||
|
|
||||||
|
return raw_headers_json
|
||||||
|
|
||||||
|
|
||||||
async def completion(session, key):
|
async def completion(session, key):
|
||||||
url = "http://0.0.0.0:4000/completions"
|
url = "http://0.0.0.0:4000/completions"
|
||||||
headers = {
|
headers = {
|
||||||
|
@ -222,6 +263,36 @@ async def test_chat_completion_ratelimit():
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_chat_completion_different_deployments():
|
||||||
|
"""
|
||||||
|
- call model group with 2 deployments
|
||||||
|
- make 5 calls
|
||||||
|
- expect 2 unique deployments
|
||||||
|
"""
|
||||||
|
async with aiohttp.ClientSession() as session:
|
||||||
|
# key_gen = await generate_key(session=session)
|
||||||
|
key = "sk-1234"
|
||||||
|
results = []
|
||||||
|
for _ in range(5):
|
||||||
|
results.append(
|
||||||
|
await chat_completion_with_headers(
|
||||||
|
session=session, key=key, model="fake-openai-endpoint-3"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
print(f"results: {results}")
|
||||||
|
init_model_id = results[0]["x-litellm-model-id"]
|
||||||
|
deployments_shuffled = False
|
||||||
|
for result in results[1:]:
|
||||||
|
if init_model_id != result["x-litellm-model-id"]:
|
||||||
|
deployments_shuffled = True
|
||||||
|
if deployments_shuffled == False:
|
||||||
|
pytest.fail("Expected at least 1 shuffled call")
|
||||||
|
except Exception as e:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_chat_completion_old_key():
|
async def test_chat_completion_old_key():
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue