(docs) simple proxy

This commit is contained in:
ishaan-jaff 2023-11-29 16:31:08 -08:00
parent 3cc8305ec6
commit 032cd0121b

View file

@ -591,6 +591,143 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
'
```
### Load Balancing - Multiple Instances of 1 model
**LiteLLM Proxy can handle 1k+ requests/second**. Use this config to load balance between multiple instances of the same model.
The proxy will handle routing requests (using LiteLLM's Router).
In the config below requests with `model=gpt-3.5-turbo` will be routed across multiple instances of `azure/gpt-3.5-turbo`
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-eu
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key:
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key:
rpm: 6
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-large
api_base: https://openai-france-1234.openai.azure.com/
api_key:
rpm: 1440
```
#### Step 2: Start Proxy with config
```shell
$ litellm --config /path/to/config.yaml
```
#### Step 3: Use proxy
Curl Command
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
```
### Fallbacks + Cooldowns + Retries + Timeouts
If a call fails after num_retries, fall back to another model group.
If the error is a context window exceeded error, fall back to a larger model group (if given).
[**See Code**](https://github.com/BerriAI/litellm/blob/main/litellm/router.py)
**Set via config**
```yaml
model_list:
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8001
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8002
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8003
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: <my-openai-key>
- model_name: gpt-3.5-turbo-16k
litellm_params:
model: gpt-3.5-turbo-16k
api_key: <my-openai-key>
litellm_settings:
num_retries: 3 # retry call 3 times on each model_name (e.g. zephyr-beta)
request_timeout: 10 # raise Timeout error if call takes longer than 10s
fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo"]}] # fallback to gpt-3.5-turbo if call fails num_retries
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
```
**Set dynamically**
```bash
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "zephyr-beta",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
"context_window_fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
"num_retries": 2,
"request_timeout": 10
}
'
```
### Config for Embedding Models - xorbitsai/inference
Here's how you can use multiple llms with one proxy `config.yaml`.
Here is how [LiteLLM calls OpenAI Compatible Embedding models](https://docs.litellm.ai/docs/embedding/supported_embedding#openai-compatible-embedding-models)
#### Config
```yaml
model_list:
- model_name: custom_embedding_model
litellm_params:
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8000/
- model_name: custom_embedding_model
litellm_params:
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8001/
```
Run the proxy using this config
```shell
$ litellm --config /path/to/config.yaml
```
### Managing Auth - Virtual Keys
Grant other's temporary access to your proxy, with keys that expire after a set duration.
@ -784,137 +921,6 @@ model_list:
s/o to [@David Manouchehri](https://www.linkedin.com/in/davidmanouchehri/) for helping with this.
### Load Balancing - Multiple Instances of 1 model
If you have multiple instances of the same model,
in the `config.yaml` just add all of them with the same 'model_name', and the proxy will handle routing requests (using LiteLLM's Router).
In the config below requests with `model=zephyr-beta` will be routed across multiple instances of `HuggingFaceH4/zephyr-7b-beta`
```yaml
model_list:
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8001
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8002
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8003
```
#### Step 2: Start Proxy with config
```shell
$ litellm --config /path/to/config.yaml
```
#### Step 3: Use proxy
Curl Command
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "zephyr-beta",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
```
### Fallbacks + Cooldowns + Retries + Timeouts
If a call fails after num_retries, fall back to another model group.
If the error is a context window exceeded error, fall back to a larger model group (if given).
[**See Code**](https://github.com/BerriAI/litellm/blob/main/litellm/router.py)
**Set via config**
```yaml
model_list:
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8001
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8002
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8003
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: <my-openai-key>
- model_name: gpt-3.5-turbo-16k
litellm_params:
model: gpt-3.5-turbo-16k
api_key: <my-openai-key>
litellm_settings:
num_retries: 3 # retry call 3 times on each model_name (e.g. zephyr-beta)
request_timeout: 10 # raise Timeout error if call takes longer than 10s
fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo"]}] # fallback to gpt-3.5-turbo if call fails num_retries
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
```
**Set dynamically**
```bash
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "zephyr-beta",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
"context_window_fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
"num_retries": 2,
"request_timeout": 10
}
'
```
### Config for Embedding Models - xorbitsai/inference
Here's how you can use multiple llms with one proxy `config.yaml`.
Here is how [LiteLLM calls OpenAI Compatible Embedding models](https://docs.litellm.ai/docs/embedding/supported_embedding#openai-compatible-embedding-models)
#### Config
```yaml
model_list:
- model_name: custom_embedding_model
litellm_params:
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8000/
- model_name: custom_embedding_model
litellm_params:
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8001/
```
Run the proxy using this config
```shell
$ litellm --config /path/to/config.yaml
```
### Config for setting Model Aliases
Set a model alias for your deployments.