mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
adding telemetry to litellm
This commit is contained in:
parent
851f681156
commit
03ac0277d1
8 changed files with 90 additions and 43 deletions
|
@ -252,35 +252,40 @@ def completion(
|
|||
@client
|
||||
@timeout(60) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout`
|
||||
def embedding(model, input=[], azure=False, force_timeout=60, logger_fn=None):
|
||||
response = None
|
||||
if azure == True:
|
||||
# azure configs
|
||||
openai.api_type = "azure"
|
||||
openai.api_base = os.environ.get("AZURE_API_BASE")
|
||||
openai.api_version = os.environ.get("AZURE_API_VERSION")
|
||||
openai.api_key = os.environ.get("AZURE_API_KEY")
|
||||
## LOGGING
|
||||
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
|
||||
## EMBEDDING CALL
|
||||
response = openai.Embedding.create(input=input, engine=model)
|
||||
print_verbose(f"response_value: {str(response)[:50]}")
|
||||
elif model in litellm.open_ai_embedding_models:
|
||||
openai.api_type = "openai"
|
||||
openai.api_base = "https://api.openai.com/v1"
|
||||
openai.api_version = None
|
||||
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
||||
## LOGGING
|
||||
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
|
||||
## EMBEDDING CALL
|
||||
response = openai.Embedding.create(input=input, model=model)
|
||||
print_verbose(f"response_value: {str(response)[:50]}")
|
||||
else:
|
||||
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
|
||||
args = locals()
|
||||
raise ValueError(f"No valid embedding model args passed in - {args}")
|
||||
|
||||
return response
|
||||
|
||||
try:
|
||||
response = None
|
||||
if azure == True:
|
||||
# azure configs
|
||||
openai.api_type = "azure"
|
||||
openai.api_base = os.environ.get("AZURE_API_BASE")
|
||||
openai.api_version = os.environ.get("AZURE_API_VERSION")
|
||||
openai.api_key = os.environ.get("AZURE_API_KEY")
|
||||
## LOGGING
|
||||
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
|
||||
## EMBEDDING CALL
|
||||
response = openai.Embedding.create(input=input, engine=model)
|
||||
print_verbose(f"response_value: {str(response)[:50]}")
|
||||
elif model in litellm.open_ai_embedding_models:
|
||||
openai.api_type = "openai"
|
||||
openai.api_base = "https://api.openai.com/v1"
|
||||
openai.api_version = None
|
||||
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
||||
## LOGGING
|
||||
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
|
||||
## EMBEDDING CALL
|
||||
response = openai.Embedding.create(input=input, model=model)
|
||||
print_verbose(f"response_value: {str(response)[:50]}")
|
||||
else:
|
||||
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
|
||||
args = locals()
|
||||
raise ValueError(f"No valid embedding model args passed in - {args}")
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
# log the original exception
|
||||
logging(model=model, input=input, azure=azure, logger_fn=logger_fn, exception=e)
|
||||
## Map to OpenAI Exception
|
||||
raise exception_type(model=model, original_exception=e)
|
||||
####### HELPER FUNCTIONS ################
|
||||
## Set verbose to true -> ```litellm.set_verbose = True```
|
||||
def print_verbose(print_statement):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue