fix: fixing mypy linting errors and being backwards compatible for azure=true flag

This commit is contained in:
Krrish Dholakia 2023-10-05 22:36:32 -07:00
parent 25d8f45817
commit 060a2e40b2
7 changed files with 17 additions and 7 deletions

View file

@ -26,7 +26,7 @@ class AnthropicConfig():
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
"""
max_tokens_to_sample: Optional[int]=256 # anthropic requires a default
stop_sequences: Optional[list[str]]=None
stop_sequences: Optional[list]=None
temperature: Optional[int]=None
top_p: Optional[int]=None
top_k: Optional[int]=None
@ -34,7 +34,7 @@ class AnthropicConfig():
def __init__(self,
max_tokens_to_sample: Optional[int]=256, # anthropic requires a default
stop_sequences: Optional[list[str]]=None,
stop_sequences: Optional[list]=None,
temperature: Optional[int]=None,
top_p: Optional[int]=None,
top_k: Optional[int]=None,

View file

@ -223,7 +223,7 @@ def completion(
fallbacks = kwargs.get('fallbacks', [])
######## end of unpacking kwargs ###########
openai_params = ["functions", "function_call", "temperature", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "request_timeout"]
litellm_params = ["metadata", "acompletion", "caching", "return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "metadata", "fallbacks"]
litellm_params = ["metadata", "acompletion", "caching", "return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "metadata", "fallbacks", "azure"]
default_params = openai_params + litellm_params
non_default_params = {k: v for k,v in kwargs.items() if k not in default_params} # model-specific params - pass them straight to the model/provider
if mock_response:
@ -239,7 +239,9 @@ def completion(
] # update the model to the actual value if an alias has been passed in
model_response = ModelResponse()
if deployment_id != None: # azure llms
if kwargs['azure'] == True: # don't remove flag check, to remain backwards compatible for repos like Codium
custom_llm_provider="azure"
if deployment_id != None: # azure llms
model=deployment_id
custom_llm_provider="azure"
model, custom_llm_provider = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider)

View file

@ -365,7 +365,7 @@ def test_completion_openai():
litellm.api_key = None
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_openai()
# test_completion_openai()
def test_completion_openai_prompt():
@ -570,17 +570,25 @@ def test_completion_openai_with_more_optional_params():
def test_completion_azure():
try:
print("azure gpt-3.5 test\n\n")
litellm.set_verbose=True
## Test azure call
response = completion(
model="azure/chatgpt-v-2",
messages=messages,
azure=True
)
## Test azure flag for backwards compatibility
response = completion(
model="chatgpt-v-2",
messages=messages,
azure=True
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_azure()
test_completion_azure()
# new azure test for using litellm. vars,
# use the following vars in this test and make an azure_api_call