mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
refactor(proxy_server): clean up print statements
This commit is contained in:
parent
3f0bbacac7
commit
06f930a5fb
9 changed files with 775 additions and 2 deletions
461
litellm/proxy/litellm-proxy/proxy_server.py
Normal file
461
litellm/proxy/litellm-proxy/proxy_server.py
Normal file
|
@ -0,0 +1,461 @@
|
|||
import sys, os, platform, time, copy
|
||||
import threading
|
||||
import shutil, random, traceback
|
||||
# sys.path.insert(
|
||||
# 0, os.path.abspath("../..")
|
||||
# ) # Adds the parent directory to the system path - for litellm local dev
|
||||
|
||||
|
||||
try:
|
||||
import uvicorn
|
||||
import fastapi
|
||||
import tomli as tomllib
|
||||
import appdirs
|
||||
except ImportError:
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
subprocess.check_call([sys.executable, "-m", "pip", "install", "uvicorn", "fastapi", "tomli", "appdirs"])
|
||||
import uvicorn
|
||||
import fastapi
|
||||
import tomli as tomllib
|
||||
import appdirs
|
||||
|
||||
import random
|
||||
list_of_messages = [
|
||||
"'The thing I wish you improved is...'",
|
||||
"'A feature I really want is...'",
|
||||
"'The worst thing about this product is...'",
|
||||
"'This product would be better if...'",
|
||||
"'I don't like how this works...'",
|
||||
"'It would help me if you could add...'",
|
||||
"'This feature doesn't meet my needs because...'",
|
||||
"'I get frustrated when the product...'",
|
||||
]
|
||||
|
||||
def generate_feedback_box():
|
||||
box_width = 60
|
||||
|
||||
# Select a random message
|
||||
message = random.choice(list_of_messages)
|
||||
|
||||
print()
|
||||
print('\033[1;37m' + '#' + '-'*box_width + '#\033[0m')
|
||||
print('\033[1;37m' + '#' + ' '*box_width + '#\033[0m')
|
||||
print('\033[1;37m' + '# {:^59} #\033[0m'.format(message))
|
||||
print('\033[1;37m' + '# {:^59} #\033[0m'.format('https://github.com/BerriAI/litellm/issues/new'))
|
||||
print('\033[1;37m' + '#' + ' '*box_width + '#\033[0m')
|
||||
print('\033[1;37m' + '#' + '-'*box_width + '#\033[0m')
|
||||
print()
|
||||
print(' Thank you for using LiteLLM! - Krrish & Ishaan')
|
||||
print()
|
||||
print()
|
||||
|
||||
generate_feedback_box()
|
||||
|
||||
|
||||
print()
|
||||
print("\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m")
|
||||
print()
|
||||
print("\033[1;34mDocs: https://docs.litellm.ai/docs/proxy_server\033[0m")
|
||||
print()
|
||||
|
||||
import litellm
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.routing import APIRouter
|
||||
from fastapi.responses import StreamingResponse, FileResponse
|
||||
import json
|
||||
import logging
|
||||
|
||||
app = FastAPI()
|
||||
router = APIRouter()
|
||||
|
||||
user_api_base = None
|
||||
user_model = None
|
||||
user_debug = False
|
||||
user_max_tokens = None
|
||||
user_temperature = None
|
||||
user_telemetry = True
|
||||
user_config = None
|
||||
config_filename = "secrets.toml"
|
||||
config_dir = os.getcwd()
|
||||
user_config_path = os.path.join(config_dir, config_filename)
|
||||
log_file = 'api_log.json'
|
||||
#### HELPER FUNCTIONS ####
|
||||
def print_verbose(print_statement):
|
||||
global user_debug
|
||||
if user_debug:
|
||||
print(print_statement)
|
||||
|
||||
def usage_telemetry(feature: str): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
|
||||
print(f"user_telemtry: {user_telemetry}")
|
||||
if user_telemetry:
|
||||
print(f"feature telemetry: {feature}")
|
||||
data = {
|
||||
"feature": feature # "local_proxy_server"
|
||||
}
|
||||
threading.Thread(target=litellm.utils.litellm_telemetry, args=(data,), daemon=True).start()
|
||||
|
||||
def load_config():
|
||||
try:
|
||||
global user_config, user_api_base, user_max_tokens, user_temperature, user_model
|
||||
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
|
||||
with open(user_config_path, "rb") as f:
|
||||
user_config = tomllib.load(f)
|
||||
|
||||
## load keys
|
||||
if "keys" in user_config:
|
||||
for key in user_config["keys"]:
|
||||
if key == "HUGGINGFACE_API_KEY":
|
||||
litellm.huggingface_key = user_config["keys"][key]
|
||||
elif key == "OPENAI_API_KEY":
|
||||
litellm.openai_key = user_config["keys"][key]
|
||||
elif key == "TOGETHERAI_API_KEY":
|
||||
litellm.togetherai_api_key = user_config["keys"][key]
|
||||
elif key == "NLP_CLOUD_API_KEY":
|
||||
litellm.nlp_cloud_key = user_config["keys"][key]
|
||||
elif key == "ANTHROPIC_API_KEY":
|
||||
litellm.anthropic_key = user_config["keys"][key]
|
||||
elif key == "REPLICATE_API_KEY":
|
||||
litellm.replicate_key = user_config["keys"][key]
|
||||
elif key == "AWS_ACCESS_KEY_ID":
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = user_config["keys"][key]
|
||||
elif key == "AWS_SECRET_ACCESS_KEY":
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = user_config["keys"][key]
|
||||
|
||||
## settings
|
||||
litellm.add_function_to_prompt = user_config["general"].get("add_function_to_prompt", True) # by default add function to prompt if unsupported by provider
|
||||
litellm.drop_params = user_config["general"].get("drop_params", True) # by default drop params if unsupported by provider
|
||||
|
||||
## load model config - to set this run `litellm --config`
|
||||
model_config = None
|
||||
if user_model in user_config["model"]:
|
||||
model_config = user_config["model"][user_model]
|
||||
|
||||
print_verbose(f"user_config: {user_config}")
|
||||
print_verbose(f"model_config: {model_config}")
|
||||
if model_config is None:
|
||||
return
|
||||
user_model = model_config["model_name"] # raise an error if this isn't set when user runs either `litellm --model local_model` or `litellm --model hosted_model`
|
||||
print_verbose(f"user_model: {user_model}")
|
||||
|
||||
|
||||
user_max_tokens = model_config.get("max_tokens", None)
|
||||
user_temperature = model_config.get("temperature", None)
|
||||
user_api_base = model_config.get("api_base", None)
|
||||
|
||||
## custom prompt template
|
||||
if "prompt_template" in model_config:
|
||||
model_prompt_template = model_config["prompt_template"]
|
||||
if len(model_prompt_template.keys()) > 0: # if user has initialized this at all
|
||||
litellm.register_prompt_template(
|
||||
model=user_model,
|
||||
initial_prompt_value=model_prompt_template.get("MODEL_PRE_PROMPT", ""),
|
||||
roles={
|
||||
"system": {
|
||||
"pre_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
|
||||
},
|
||||
"user": {
|
||||
"pre_message": model_prompt_template.get("MODEL_USER_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": model_prompt_template.get("MODEL_USER_MESSAGE_END_TOKEN", ""),
|
||||
},
|
||||
"assistant": {
|
||||
"pre_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""),
|
||||
}
|
||||
},
|
||||
final_prompt_value=model_prompt_template.get("MODEL_POST_PROMPT", ""),
|
||||
)
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
|
||||
def initialize(model, api_base, debug, temperature, max_tokens, max_budget, telemetry, drop_params, add_function_to_prompt):
|
||||
global user_model, user_api_base, user_debug, user_max_tokens, user_temperature, user_telemetry
|
||||
user_model = model
|
||||
user_debug = debug
|
||||
|
||||
load_config()
|
||||
user_api_base = api_base
|
||||
user_max_tokens = max_tokens
|
||||
user_temperature = temperature
|
||||
user_telemetry = telemetry
|
||||
usage_telemetry(feature="local_proxy_server")
|
||||
if drop_params == True:
|
||||
litellm.drop_params = True
|
||||
if add_function_to_prompt == True:
|
||||
litellm.add_function_to_prompt = True
|
||||
if max_budget:
|
||||
litellm.max_budget = max_budget
|
||||
|
||||
|
||||
def deploy_proxy(model, api_base, debug, temperature, max_tokens, telemetry, deploy):
|
||||
import requests
|
||||
# Load .env file
|
||||
|
||||
# Prepare data for posting
|
||||
data = {
|
||||
"model": model,
|
||||
"api_base": api_base,
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens,
|
||||
}
|
||||
|
||||
# print(data)
|
||||
|
||||
# Make post request to the url
|
||||
url = "https://litellm-api.onrender.com/deploy"
|
||||
# url = "http://0.0.0.0:4000/deploy"
|
||||
|
||||
with open(".env", "w") as env_file:
|
||||
for row in data:
|
||||
env_file.write(f"{row.upper()}='{data[row]}'\n")
|
||||
env_file.write("\n\n")
|
||||
for key in os.environ:
|
||||
value = os.environ[key]
|
||||
env_file.write(f"{key}='{value}'\n")
|
||||
# env_file.write(str(os.environ))
|
||||
|
||||
files = {"file": open(".env", "rb")}
|
||||
# print(files)
|
||||
|
||||
|
||||
|
||||
response = requests.post(url, data=data, files=files)
|
||||
# print(response)
|
||||
# Check the status of the request
|
||||
if response.status_code != 200:
|
||||
return f"Request to url: {url} failed with status: {response.status_code}"
|
||||
|
||||
# Reading the response
|
||||
response_data = response.json()
|
||||
# print(response_data)
|
||||
url = response_data["url"]
|
||||
# # Do something with response_data
|
||||
|
||||
return url
|
||||
|
||||
|
||||
# for streaming
|
||||
def data_generator(response):
|
||||
print_verbose("inside generator")
|
||||
for chunk in response:
|
||||
print_verbose(f"returned chunk: {chunk}")
|
||||
yield f"data: {json.dumps(chunk)}\n\n"
|
||||
|
||||
def track_cost_callback(
|
||||
kwargs, # kwargs to completion
|
||||
completion_response, # response from completion
|
||||
start_time, end_time # start/end time
|
||||
):
|
||||
# track cost like this
|
||||
# {
|
||||
# "Oct12": {
|
||||
# "gpt-4": 10,
|
||||
# "claude-2": 12.01,
|
||||
# },
|
||||
# "Oct 15": {
|
||||
# "ollama/llama2": 0.0,
|
||||
# "gpt2": 1.2
|
||||
# }
|
||||
# }
|
||||
try:
|
||||
|
||||
# for streaming responses
|
||||
if "complete_streaming_response" in kwargs:
|
||||
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
|
||||
completion_response=kwargs["complete_streaming_response"]
|
||||
input_text = kwargs["messages"]
|
||||
output_text = completion_response["choices"][0]["message"]["content"]
|
||||
response_cost = litellm.completion_cost(
|
||||
model = kwargs["model"],
|
||||
messages = input_text,
|
||||
completion=output_text
|
||||
)
|
||||
model = kwargs['model']
|
||||
print("streaming response_cost", response_cost)
|
||||
|
||||
# for non streaming responses
|
||||
else:
|
||||
# we pass the completion_response obj
|
||||
if kwargs["stream"] != True:
|
||||
response_cost = litellm.completion_cost(completion_response=completion_response)
|
||||
print("regular response_cost", response_cost)
|
||||
model = completion_response["model"]
|
||||
|
||||
# read/write from json for storing daily model costs
|
||||
cost_data = {}
|
||||
try:
|
||||
with open("costs.json") as f:
|
||||
cost_data = json.load(f)
|
||||
except FileNotFoundError:
|
||||
cost_data = {}
|
||||
import datetime
|
||||
date = datetime.datetime.now().strftime("%b-%d-%Y")
|
||||
if date not in cost_data:
|
||||
cost_data[date] = {}
|
||||
|
||||
if kwargs["model"] in cost_data[date]:
|
||||
cost_data[date][kwargs["model"]]["cost"] += response_cost
|
||||
cost_data[date][kwargs["model"]]["num_requests"] += 1
|
||||
else:
|
||||
cost_data[date][kwargs["model"]] = {
|
||||
"cost": response_cost,
|
||||
"num_requests": 1
|
||||
}
|
||||
|
||||
with open("costs.json", "w") as f:
|
||||
json.dump(cost_data, f, indent=2)
|
||||
|
||||
except:
|
||||
pass
|
||||
|
||||
def logger(
|
||||
kwargs, # kwargs to completion
|
||||
completion_response=None, # response from completion
|
||||
start_time=None,
|
||||
end_time=None # start/end time
|
||||
):
|
||||
log_event_type = kwargs['log_event_type']
|
||||
print(f"REACHES LOGGER: {log_event_type}")
|
||||
try:
|
||||
if log_event_type == 'pre_api_call':
|
||||
inference_params = copy.deepcopy(kwargs)
|
||||
timestamp = inference_params.pop('start_time')
|
||||
dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
|
||||
log_data = {
|
||||
dt_key: {
|
||||
'pre_api_call': inference_params
|
||||
}
|
||||
}
|
||||
|
||||
try:
|
||||
with open(log_file, 'r') as f:
|
||||
existing_data = json.load(f)
|
||||
except FileNotFoundError:
|
||||
existing_data = {}
|
||||
|
||||
existing_data.update(log_data)
|
||||
|
||||
with open(log_file, 'w') as f:
|
||||
json.dump(existing_data, f, indent=2)
|
||||
elif log_event_type == 'post_api_call':
|
||||
print(f"post api call kwargs: {kwargs}")
|
||||
if "stream" not in kwargs["optional_params"] or kwargs["optional_params"]["stream"] is False or kwargs.get("complete_streaming_response", False):
|
||||
inference_params = copy.deepcopy(kwargs)
|
||||
timestamp = inference_params.pop('start_time')
|
||||
dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
|
||||
|
||||
with open(log_file, 'r') as f:
|
||||
existing_data = json.load(f)
|
||||
|
||||
existing_data[dt_key]['post_api_call'] = inference_params
|
||||
|
||||
with open(log_file, 'w') as f:
|
||||
json.dump(existing_data, f, indent=2)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
|
||||
litellm.input_callback = [logger]
|
||||
litellm.success_callback = [logger]
|
||||
litellm.failure_callback = [logger]
|
||||
|
||||
def litellm_completion(data, type):
|
||||
try:
|
||||
if user_model:
|
||||
data["model"] = user_model
|
||||
# override with user settings
|
||||
if user_temperature:
|
||||
data["temperature"] = user_temperature
|
||||
if user_max_tokens:
|
||||
data["max_tokens"] = user_max_tokens
|
||||
if user_api_base:
|
||||
data["api_base"] = user_api_base
|
||||
if type == "completion":
|
||||
response = litellm.text_completion(**data)
|
||||
elif type == "chat_completion":
|
||||
response = litellm.completion(**data)
|
||||
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
||||
return StreamingResponse(data_generator(response), media_type='text/event-stream')
|
||||
print_verbose(f"response: {response}")
|
||||
return response
|
||||
except Exception as e:
|
||||
if "Invalid response object from API" in str(e):
|
||||
completion_call_details = {}
|
||||
if user_model:
|
||||
completion_call_details["model"] = user_model
|
||||
else:
|
||||
completion_call_details["model"] = data['model']
|
||||
|
||||
if user_api_base:
|
||||
completion_call_details["api_base"] = user_api_base
|
||||
else:
|
||||
completion_call_details["api_base"] = None
|
||||
print(f"\033[1;31mLiteLLM.Exception: Invalid API Call. Call details: Model: \033[1;37m{completion_call_details['model']}\033[1;31m; LLM Provider: \033[1;37m{e.llm_provider}\033[1;31m; Custom API Base - \033[1;37m{completion_call_details['api_base']}\033[1;31m\033[0m")
|
||||
if completion_call_details["api_base"] == "http://localhost:11434":
|
||||
print()
|
||||
print("Trying to call ollama? Try `litellm --model ollama/llama2 --api_base http://localhost:11434`")
|
||||
print()
|
||||
else:
|
||||
print(f"\033[1;31mLiteLLM.Exception: {str(e)}\033[0m")
|
||||
return {"message": "An error occurred"}, 500
|
||||
|
||||
#### API ENDPOINTS ####
|
||||
@router.get("/models") # if project requires model list
|
||||
def model_list():
|
||||
if user_model != None:
|
||||
return dict(
|
||||
data=[{"id": user_model, "object": "model", "created": 1677610602, "owned_by": "openai"}],
|
||||
object="list",
|
||||
)
|
||||
else:
|
||||
all_models = litellm.model_list
|
||||
return dict(
|
||||
data = [{"id": model, "object": "model", "created": 1677610602, "owned_by": "openai"} for model in all_models],
|
||||
object="list",
|
||||
)
|
||||
|
||||
@router.post("/completions")
|
||||
async def completion(request: Request):
|
||||
data = await request.json()
|
||||
return litellm_completion(data=data, type="completion")
|
||||
|
||||
@router.post("/chat/completions")
|
||||
async def chat_completion(request: Request):
|
||||
data = await request.json()
|
||||
print(f"data passed in: {data}")
|
||||
response = litellm_completion(data, type="chat_completion")
|
||||
return response
|
||||
|
||||
|
||||
# V1 Endpoints - some apps expect a v1 endpoint - these call the regular function
|
||||
@router.post("/v1/completions")
|
||||
async def v1_completion(request: Request):
|
||||
data = await request.json()
|
||||
return litellm_completion(data=data, type="completion")
|
||||
|
||||
@router.post("/v1/chat/completions")
|
||||
async def v1_chat_completion(request: Request):
|
||||
data = await request.json()
|
||||
print_verbose(f"data passed in: {data}")
|
||||
response = litellm_completion(data, type="chat_completion")
|
||||
return response
|
||||
|
||||
def print_cost_logs():
|
||||
with open('costs.json', 'r') as f:
|
||||
# print this in green
|
||||
print("\033[1;32m")
|
||||
print(f.read())
|
||||
print("\033[0m")
|
||||
return
|
||||
|
||||
@router.get("/ollama_logs")
|
||||
async def retrieve_server_log(request: Request):
|
||||
filepath = os.path.expanduser('~/.ollama/logs/server.log')
|
||||
return FileResponse(filepath)
|
||||
|
||||
@router.get("/")
|
||||
async def home(request: Request):
|
||||
return "LiteLLM: RUNNING"
|
||||
|
||||
app.include_router(router)
|
Loading…
Add table
Add a link
Reference in a new issue