mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
fix(vertex_ai.py): support optional params + enable async calls for gemini
This commit is contained in:
parent
625df3c256
commit
07015843ac
5 changed files with 94 additions and 24 deletions
|
@ -69,6 +69,7 @@ def completion(
|
|||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
acompletion: bool=False
|
||||
):
|
||||
try:
|
||||
import vertexai
|
||||
|
@ -77,7 +78,7 @@ def completion(
|
|||
try:
|
||||
from vertexai.preview.language_models import ChatModel, CodeChatModel, InputOutputTextPair
|
||||
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
|
||||
from vertexai.preview.generative_models import GenerativeModel, Part
|
||||
from vertexai.preview.generative_models import GenerativeModel, Part, GenerationConfig
|
||||
|
||||
|
||||
vertexai.init(
|
||||
|
@ -99,13 +100,13 @@ def completion(
|
|||
request_str = ""
|
||||
response_obj = None
|
||||
if model in litellm.vertex_language_models:
|
||||
chat_model = GenerativeModel(model)
|
||||
llm_model = GenerativeModel(model)
|
||||
mode = ""
|
||||
request_str += f"chat_model = GenerativeModel({model})\n"
|
||||
request_str += f"llm_model = GenerativeModel({model})\n"
|
||||
elif model in litellm.vertex_chat_models:
|
||||
chat_model = ChatModel.from_pretrained(model)
|
||||
llm_model = ChatModel.from_pretrained(model)
|
||||
mode = "chat"
|
||||
request_str += f"chat_model = ChatModel.from_pretrained({model})\n"
|
||||
request_str += f"llm_model = ChatModel.from_pretrained({model})\n"
|
||||
elif model in litellm.vertex_text_models:
|
||||
text_model = TextGenerationModel.from_pretrained(model)
|
||||
mode = "text"
|
||||
|
@ -114,34 +115,38 @@ def completion(
|
|||
text_model = CodeGenerationModel.from_pretrained(model)
|
||||
mode = "text"
|
||||
request_str += f"text_model = CodeGenerationModel.from_pretrained({model})\n"
|
||||
else: # vertex_code_chat_models
|
||||
chat_model = CodeChatModel.from_pretrained(model)
|
||||
else: # vertex_code_llm_models
|
||||
llm_model = CodeChatModel.from_pretrained(model)
|
||||
mode = "chat"
|
||||
request_str += f"chat_model = CodeChatModel.from_pretrained({model})\n"
|
||||
request_str += f"llm_model = CodeChatModel.from_pretrained({model})\n"
|
||||
|
||||
if acompletion == True and model in litellm.vertex_language_models: # [TODO] expand support to vertex ai chat + text models
|
||||
if optional_params.get("stream", False) is True:
|
||||
# async streaming
|
||||
pass
|
||||
return async_completion(llm_model=llm_model, mode=mode, prompt=prompt, logging_obj=logging_obj, request_str=request_str, model=model, model_response=model_response, **optional_params)
|
||||
|
||||
if mode == "":
|
||||
chat = chat_model.start_chat()
|
||||
request_str+= f"chat = chat_model.start_chat()\n"
|
||||
chat = llm_model.start_chat()
|
||||
request_str+= f"chat = llm_model.start_chat()\n"
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
request_str += f"chat.send_message_streaming({prompt}, **{optional_params})\n"
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
model_response = chat.send_message(prompt, **optional_params)
|
||||
model_response = chat.send_message(prompt, generation_config=GenerationConfig(**optional_params))
|
||||
optional_params["stream"] = True
|
||||
return model_response
|
||||
|
||||
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
response_obj = chat.send_message(prompt, **optional_params)
|
||||
response_obj = chat.send_message(prompt, generation_config=GenerationConfig(**optional_params))
|
||||
completion_response = response_obj.text
|
||||
response_obj = response_obj._raw_response
|
||||
elif mode == "chat":
|
||||
chat = chat_model.start_chat()
|
||||
request_str+= f"chat = chat_model.start_chat()\n"
|
||||
|
||||
## LOGGING
|
||||
|
||||
chat = llm_model.start_chat()
|
||||
request_str+= f"chat = llm_model.start_chat()\n"
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
|
||||
|
@ -149,12 +154,14 @@ def completion(
|
|||
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
|
||||
optional_params.pop("stream", None) # vertex ai raises an error when passing stream in optional params
|
||||
request_str += f"chat.send_message_streaming({prompt}, **{optional_params})\n"
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
model_response = chat.send_message_streaming(prompt, **optional_params)
|
||||
optional_params["stream"] = True
|
||||
return model_response
|
||||
|
||||
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
completion_response = chat.send_message(prompt, **optional_params).text
|
||||
elif mode == "text":
|
||||
|
@ -162,12 +169,14 @@ def completion(
|
|||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
optional_params.pop("stream", None) # See note above on handling streaming for vertex ai
|
||||
request_str += f"text_model.predict_streaming({prompt}, **{optional_params})\n"
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
model_response = text_model.predict_streaming(prompt, **optional_params)
|
||||
optional_params["stream"] = True
|
||||
return model_response
|
||||
|
||||
request_str += f"text_model.predict({prompt}, **{optional_params}).text\n"
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
completion_response = text_model.predict(prompt, **optional_params).text
|
||||
|
||||
|
@ -207,6 +216,49 @@ def completion(
|
|||
except Exception as e:
|
||||
raise VertexAIError(status_code=500, message=str(e))
|
||||
|
||||
async def async_completion(llm_model, mode: str, prompt: str, model: str, model_response: ModelResponse, logging_obj=None, request_str=None, **optional_params):
|
||||
"""
|
||||
Add support for acompletion calls for gemini-pro
|
||||
"""
|
||||
from vertexai.preview.generative_models import GenerationConfig
|
||||
|
||||
if mode == "":
|
||||
# gemini-pro
|
||||
llm_model = llm_model.start_chat()
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
response_obj = await llm_model.send_message_async(prompt, generation_config=GenerationConfig(**optional_params))
|
||||
completion_response = response_obj.text
|
||||
response_obj = response_obj._raw_response
|
||||
elif mode == "chat":
|
||||
# chat-bison etc.
|
||||
pass
|
||||
elif mode == "text":
|
||||
# gecko etc.
|
||||
pass
|
||||
|
||||
|
||||
## RESPONSE OBJECT
|
||||
if len(str(completion_response)) > 0:
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = str(completion_response)
|
||||
model_response["choices"][0]["message"]["content"] = str(completion_response)
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = model
|
||||
## CALCULATING USAGE
|
||||
if model in litellm.vertex_language_models and response_obj is not None:
|
||||
model_response["choices"][0].finish_reason = response_obj.candidates[0].finish_reason.name
|
||||
usage = Usage(prompt_tokens=response_obj.usage_metadata.prompt_token_count,
|
||||
completion_tokens=response_obj.usage_metadata.candidates_token_count,
|
||||
total_tokens=response_obj.usage_metadata.total_token_count)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def async_streaming():
|
||||
"""
|
||||
Add support for async streaming calls for gemini-pro
|
||||
"""
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue