Litellm dev 01 25 2025 p2 (#8003)

* fix(base_utils.py): supported nested json schema passed in for anthropic calls

* refactor(base_utils.py): refactor ref parsing to prevent infinite loop

* test(test_openai_endpoints.py): refactor anthropic test to use bedrock

* fix(langfuse_prompt_management.py): add unit test for sync langfuse calls

Resolves https://github.com/BerriAI/litellm/issues/7938#issuecomment-2613293757
This commit is contained in:
Krish Dholakia 2025-01-25 16:50:57 -08:00 committed by GitHub
parent a7b3c664d1
commit 08b124aeb6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 214 additions and 5 deletions

View file

@ -312,6 +312,56 @@ class BaseLLMChatTest(ABC):
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
@pytest.mark.flaky(retries=6, delay=1)
def test_json_response_nested_json_schema(self):
"""
PROD Test: ensure nested json schema sent to proxy works as expected.
"""
from pydantic import BaseModel
from litellm.utils import supports_response_schema
from litellm.llms.base_llm.base_utils import type_to_response_format_param
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
class EventsList(BaseModel):
events: list[CalendarEvent]
response_format = type_to_response_format_param(EventsList)
messages = [
{"role": "user", "content": "List 5 important events in the XIX century"}
]
base_completion_call_args = self.get_base_completion_call_args()
if not supports_response_schema(base_completion_call_args["model"], None):
pytest.skip(
f"Model={base_completion_call_args['model']} does not support response schema"
)
try:
res = self.completion_function(
**base_completion_call_args,
messages=messages,
response_format=response_format,
timeout=60,
)
assert res is not None
print(res.choices[0].message)
assert res.choices[0].message.content is not None
assert res.choices[0].message.tool_calls is None
except litellm.Timeout:
pytest.skip("Model took too long to respond")
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
@pytest.mark.flaky(retries=6, delay=1)
def test_json_response_format_stream(self):
"""