mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
fix(types/utils.py): support passing prompt cache usage stats in usage object
Passes deepseek prompt caching values through to end user
This commit is contained in:
parent
cd073d5ad3
commit
0a30ba9674
3 changed files with 40 additions and 9 deletions
|
@ -1007,3 +1007,20 @@ def test_completion_cost_anthropic():
|
|||
|
||||
print(input_cost)
|
||||
print(output_cost)
|
||||
|
||||
|
||||
def test_completion_cost_deepseek():
|
||||
litellm.set_verbose = True
|
||||
model_name = "deepseek/deepseek-chat"
|
||||
messages = [{"role": "user", "content": "Hey, how's it going?"}]
|
||||
try:
|
||||
response_1 = litellm.completion(model=model_name, messages=messages)
|
||||
response_2 = litellm.completion(model=model_name, messages=messages)
|
||||
# Add any assertions here to check the response
|
||||
print(response_2)
|
||||
assert response_2.usage.prompt_cache_hit_tokens is not None
|
||||
assert response_2.usage.prompt_cache_miss_tokens is not None
|
||||
except litellm.APIError as e:
|
||||
pass
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
|
|
@ -5,7 +5,7 @@ from enum import Enum
|
|||
from typing import Dict, List, Literal, Optional, Tuple, Union
|
||||
|
||||
from openai._models import BaseModel as OpenAIObject
|
||||
from pydantic import ConfigDict
|
||||
from pydantic import ConfigDict, Field, PrivateAttr
|
||||
from typing_extensions import Dict, Required, TypedDict, override
|
||||
|
||||
from ..litellm_core_utils.core_helpers import map_finish_reason
|
||||
|
@ -445,16 +445,28 @@ class Choices(OpenAIObject):
|
|||
|
||||
|
||||
class Usage(OpenAIObject):
|
||||
prompt_cache_hit_tokens: Optional[int] = Field(default=None)
|
||||
prompt_cache_miss_tokens: Optional[int] = Field(default=None)
|
||||
prompt_tokens: Optional[int] = Field(default=None)
|
||||
completion_tokens: Optional[int] = Field(default=None)
|
||||
total_tokens: Optional[int] = Field(default=None)
|
||||
|
||||
def __init__(
|
||||
self, prompt_tokens=None, completion_tokens=None, total_tokens=None, **params
|
||||
self,
|
||||
prompt_tokens: Optional[int] = None,
|
||||
completion_tokens: Optional[int] = None,
|
||||
total_tokens: Optional[int] = None,
|
||||
prompt_cache_hit_tokens: Optional[int] = None,
|
||||
prompt_cache_miss_tokens: Optional[int] = None,
|
||||
):
|
||||
super(Usage, self).__init__(**params)
|
||||
if prompt_tokens:
|
||||
self.prompt_tokens = prompt_tokens
|
||||
if completion_tokens:
|
||||
self.completion_tokens = completion_tokens
|
||||
if total_tokens:
|
||||
self.total_tokens = total_tokens
|
||||
data = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": total_tokens,
|
||||
"prompt_cache_hit_tokens": prompt_cache_hit_tokens,
|
||||
"prompt_cache_miss_tokens": prompt_cache_miss_tokens,
|
||||
}
|
||||
super().__init__(**data)
|
||||
|
||||
def __contains__(self, key):
|
||||
# Define custom behavior for the 'in' operator
|
||||
|
|
|
@ -5825,6 +5825,8 @@ def convert_to_model_response_object(
|
|||
model_response_object.usage.completion_tokens = response_object["usage"].get("completion_tokens", 0) # type: ignore
|
||||
model_response_object.usage.prompt_tokens = response_object["usage"].get("prompt_tokens", 0) # type: ignore
|
||||
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
|
||||
model_response_object.usage.prompt_cache_hit_tokens = response_object["usage"].get("prompt_cache_hit_tokens", None) # type: ignore
|
||||
model_response_object.usage.prompt_cache_miss_tokens = response_object["usage"].get("prompt_cache_miss_tokens", None) # type: ignore
|
||||
|
||||
if "created" in response_object:
|
||||
model_response_object.created = response_object["created"] or int(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue