mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
Merge pull request #3682 from BerriAI/litellm_token_counter_endpoint
[Feat] `token_counter` endpoint
This commit is contained in:
commit
0a816b2c45
4 changed files with 214 additions and 2 deletions
|
@ -89,6 +89,8 @@ class LiteLLMRoutes(enum.Enum):
|
||||||
"/v1/models",
|
"/v1/models",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
llm_utils_routes: List = ["utils/token_counter"]
|
||||||
|
|
||||||
info_routes: List = [
|
info_routes: List = [
|
||||||
"/key/info",
|
"/key/info",
|
||||||
"/team/info",
|
"/team/info",
|
||||||
|
@ -1011,3 +1013,16 @@ class LiteLLM_ErrorLogs(LiteLLMBase):
|
||||||
|
|
||||||
class LiteLLM_SpendLogs_ResponseObject(LiteLLMBase):
|
class LiteLLM_SpendLogs_ResponseObject(LiteLLMBase):
|
||||||
response: Optional[List[Union[LiteLLM_SpendLogs, Any]]] = None
|
response: Optional[List[Union[LiteLLM_SpendLogs, Any]]] = None
|
||||||
|
|
||||||
|
|
||||||
|
class TokenCountRequest(LiteLLMBase):
|
||||||
|
model: str
|
||||||
|
prompt: Optional[str] = None
|
||||||
|
messages: Optional[List[dict]] = None
|
||||||
|
|
||||||
|
|
||||||
|
class TokenCountResponse(LiteLLMBase):
|
||||||
|
total_tokens: int
|
||||||
|
request_model: str
|
||||||
|
model_used: str
|
||||||
|
tokenizer_type: str
|
||||||
|
|
|
@ -4777,6 +4777,56 @@ async def moderations(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/utils/token_counter",
|
||||||
|
tags=["llm utils"],
|
||||||
|
dependencies=[Depends(user_api_key_auth)],
|
||||||
|
response_model=TokenCountResponse,
|
||||||
|
)
|
||||||
|
async def token_counter(request: TokenCountRequest):
|
||||||
|
""" """
|
||||||
|
from litellm import token_counter
|
||||||
|
|
||||||
|
global llm_router
|
||||||
|
|
||||||
|
prompt = request.prompt
|
||||||
|
messages = request.messages
|
||||||
|
if prompt is None and messages is None:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="prompt or messages must be provided"
|
||||||
|
)
|
||||||
|
|
||||||
|
deployment = None
|
||||||
|
litellm_model_name = None
|
||||||
|
if llm_router is not None:
|
||||||
|
# get 1 deployment corresponding to the model
|
||||||
|
for _model in llm_router.model_list:
|
||||||
|
if _model["model_name"] == request.model:
|
||||||
|
deployment = _model
|
||||||
|
break
|
||||||
|
if deployment is not None:
|
||||||
|
litellm_model_name = deployment.get("litellm_params", {}).get("model")
|
||||||
|
# remove the custom_llm_provider_prefix in the litellm_model_name
|
||||||
|
if "/" in litellm_model_name:
|
||||||
|
litellm_model_name = litellm_model_name.split("/", 1)[1]
|
||||||
|
|
||||||
|
model_to_use = (
|
||||||
|
litellm_model_name or request.model
|
||||||
|
) # use litellm model name, if it's not avalable then fallback to request.model
|
||||||
|
total_tokens, tokenizer_used = token_counter(
|
||||||
|
model=model_to_use,
|
||||||
|
text=prompt,
|
||||||
|
messages=messages,
|
||||||
|
return_tokenizer_used=True,
|
||||||
|
)
|
||||||
|
return TokenCountResponse(
|
||||||
|
total_tokens=total_tokens,
|
||||||
|
request_model=request.model,
|
||||||
|
model_used=model_to_use,
|
||||||
|
tokenizer_type=tokenizer_used,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
#### KEY MANAGEMENT ####
|
#### KEY MANAGEMENT ####
|
||||||
|
|
||||||
|
|
||||||
|
|
138
litellm/tests/test_proxy_token_counter.py
Normal file
138
litellm/tests/test_proxy_token_counter.py
Normal file
|
@ -0,0 +1,138 @@
|
||||||
|
# Test the following scenarios:
|
||||||
|
# 1. Generate a Key, and use it to make a call
|
||||||
|
|
||||||
|
|
||||||
|
import sys, os
|
||||||
|
import traceback
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from fastapi import Request
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
import os, io, time
|
||||||
|
|
||||||
|
# this file is to test litellm/proxy
|
||||||
|
|
||||||
|
sys.path.insert(
|
||||||
|
0, os.path.abspath("../..")
|
||||||
|
) # Adds the parent directory to the system path
|
||||||
|
import pytest, logging, asyncio
|
||||||
|
import litellm, asyncio
|
||||||
|
from litellm.proxy.proxy_server import token_counter
|
||||||
|
from litellm.proxy.utils import PrismaClient, ProxyLogging, hash_token, update_spend
|
||||||
|
from litellm._logging import verbose_proxy_logger
|
||||||
|
|
||||||
|
verbose_proxy_logger.setLevel(level=logging.DEBUG)
|
||||||
|
|
||||||
|
from litellm.proxy._types import TokenCountRequest, TokenCountResponse
|
||||||
|
|
||||||
|
|
||||||
|
from litellm import Router
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_vLLM_token_counting():
|
||||||
|
"""
|
||||||
|
Test Token counter for vLLM models
|
||||||
|
- User passes model="special-alias"
|
||||||
|
- token_counter should infer that special_alias -> maps to wolfram/miquliz-120b-v2.0
|
||||||
|
-> token counter should use hugging face tokenizer
|
||||||
|
"""
|
||||||
|
|
||||||
|
llm_router = Router(
|
||||||
|
model_list=[
|
||||||
|
{
|
||||||
|
"model_name": "special-alias",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "openai/wolfram/miquliz-120b-v2.0",
|
||||||
|
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
|
||||||
|
|
||||||
|
response = await token_counter(
|
||||||
|
request=TokenCountRequest(
|
||||||
|
model="special-alias",
|
||||||
|
messages=[{"role": "user", "content": "hello"}],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
print("response: ", response)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
response.tokenizer_type == "huggingface_tokenizer"
|
||||||
|
) # SHOULD use the hugging face tokenizer
|
||||||
|
assert response.model_used == "wolfram/miquliz-120b-v2.0"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_token_counting_model_not_in_model_list():
|
||||||
|
"""
|
||||||
|
Test Token counter - when a model is not in model_list
|
||||||
|
-> should use the default OpenAI tokenizer
|
||||||
|
"""
|
||||||
|
|
||||||
|
llm_router = Router(
|
||||||
|
model_list=[
|
||||||
|
{
|
||||||
|
"model_name": "gpt-4",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "gpt-4",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
|
||||||
|
|
||||||
|
response = await token_counter(
|
||||||
|
request=TokenCountRequest(
|
||||||
|
model="special-alias",
|
||||||
|
messages=[{"role": "user", "content": "hello"}],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
print("response: ", response)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
response.tokenizer_type == "openai_tokenizer"
|
||||||
|
) # SHOULD use the OpenAI tokenizer
|
||||||
|
assert response.model_used == "special-alias"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_gpt_token_counting():
|
||||||
|
"""
|
||||||
|
Test Token counter
|
||||||
|
-> should work for gpt-4
|
||||||
|
"""
|
||||||
|
|
||||||
|
llm_router = Router(
|
||||||
|
model_list=[
|
||||||
|
{
|
||||||
|
"model_name": "gpt-4",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "gpt-4",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
|
||||||
|
|
||||||
|
response = await token_counter(
|
||||||
|
request=TokenCountRequest(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "hello"}],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
print("response: ", response)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
response.tokenizer_type == "openai_tokenizer"
|
||||||
|
) # SHOULD use the OpenAI tokenizer
|
||||||
|
assert response.request_model == "gpt-4"
|
|
@ -3880,6 +3880,11 @@ def _select_tokenizer(model: str):
|
||||||
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
||||||
# default - tiktoken
|
# default - tiktoken
|
||||||
else:
|
else:
|
||||||
|
tokenizer = None
|
||||||
|
try:
|
||||||
|
tokenizer = Tokenizer.from_pretrained(model)
|
||||||
|
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
||||||
|
except:
|
||||||
return {"type": "openai_tokenizer", "tokenizer": encoding}
|
return {"type": "openai_tokenizer", "tokenizer": encoding}
|
||||||
|
|
||||||
|
|
||||||
|
@ -4117,6 +4122,7 @@ def token_counter(
|
||||||
text: Optional[Union[str, List[str]]] = None,
|
text: Optional[Union[str, List[str]]] = None,
|
||||||
messages: Optional[List] = None,
|
messages: Optional[List] = None,
|
||||||
count_response_tokens: Optional[bool] = False,
|
count_response_tokens: Optional[bool] = False,
|
||||||
|
return_tokenizer_used: Optional[bool] = False,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Count the number of tokens in a given text using a specified model.
|
Count the number of tokens in a given text using a specified model.
|
||||||
|
@ -4209,7 +4215,10 @@ def token_counter(
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
num_tokens = len(encoding.encode(text, disallowed_special=())) # type: ignore
|
num_tokens = len(encoding.encode(text, disallowed_special=())) # type: ignore
|
||||||
|
_tokenizer_type = tokenizer_json["type"]
|
||||||
|
if return_tokenizer_used:
|
||||||
|
# used by litellm proxy server -> POST /utils/token_counter
|
||||||
|
return num_tokens, _tokenizer_type
|
||||||
return num_tokens
|
return num_tokens
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue