Litellm dev 12 07 2024 (#7086)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 11s

* fix(main.py): support passing max retries to azure/openai embedding integrations

Fixes https://github.com/BerriAI/litellm/issues/7003

* feat(team_endpoints.py): allow updating team model aliases

Closes https://github.com/BerriAI/litellm/issues/6956

* feat(router.py): allow specifying model id as fallback - skips any cooldown check

Allows a default model to be checked if all models in cooldown

s/o @micahjsmith

* docs(reliability.md): add fallback to specific model to docs

* fix(utils.py): new 'is_prompt_caching_valid_prompt' helper util

Allows user to identify if messages/tools have prompt caching

Related issue: https://github.com/BerriAI/litellm/issues/6784

* feat(router.py): store model id for prompt caching valid prompt

Allows routing to that model id on subsequent requests

* fix(router.py): only cache if prompt is valid prompt caching prompt

prevents storing unnecessary items in cache

* feat(router.py): support routing prompt caching enabled models to previous deployments

Closes https://github.com/BerriAI/litellm/issues/6784

* test: fix linting errors

* feat(databricks/): convert basemodel to dict and exclude none values

allow passing pydantic message to databricks

* fix(utils.py): ensure all chat completion messages are dict

* (feat) Track `custom_llm_provider` in LiteLLMSpendLogs (#7081)

* add custom_llm_provider to SpendLogsPayload

* add custom_llm_provider to SpendLogs

* add custom llm provider to SpendLogs payload

* test_spend_logs_payload

* Add MLflow to the side bar (#7031)

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* (bug fix) SpendLogs update DB catch all possible DB errors for retrying  (#7082)

* catch DB_CONNECTION_ERROR_TYPES

* fix DB retry mechanism for SpendLog updates

* use DB_CONNECTION_ERROR_TYPES in auth checks

* fix exp back off for writing SpendLogs

* use _raise_failed_update_spend_exception to ensure errors print as NON blocking

* test_update_spend_logs_multiple_batches_with_failure

* (Feat) Add StructuredOutputs support for Fireworks.AI (#7085)

* fix model cost map fireworks ai "supports_response_schema": true,

* fix supports_response_schema

* fix map openai params fireworks ai

* test_map_response_format

* test_map_response_format

* added deepinfra/Meta-Llama-3.1-405B-Instruct (#7084)

* bump: version 1.53.9 → 1.54.0

* fix deepinfra

* litellm db fixes LiteLLM_UserTable (#7089)

* ci/cd queue new release

* fix llama-3.3-70b-versatile

* refactor - use consistent file naming convention `AI21/` -> `ai21`  (#7090)

* fix refactor - use consistent file naming convention

* ci/cd run again

* fix naming structure

* fix use consistent naming (#7092)

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Yuki Watanabe <31463517+B-Step62@users.noreply.github.com>
Co-authored-by: ali sayyah <ali.sayyah2@gmail.com>
This commit is contained in:
Krish Dholakia 2024-12-08 00:30:33 -08:00 committed by GitHub
parent 36e99ebce7
commit 0c0498dd60
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
24 changed files with 840 additions and 193 deletions

View file

@ -6151,6 +6151,38 @@ from litellm.types.llms.openai import (
)
def convert_to_dict(message: Union[BaseModel, dict]) -> dict:
"""
Converts a message to a dictionary if it's a Pydantic model.
Args:
message: The message, which may be a Pydantic model or a dictionary.
Returns:
dict: The converted message.
"""
if isinstance(message, BaseModel):
return message.model_dump(exclude_none=True)
elif isinstance(message, dict):
return message
else:
raise TypeError(
f"Invalid message type: {type(message)}. Expected dict or Pydantic model."
)
def validate_chat_completion_messages(messages: List[AllMessageValues]):
"""
Ensures all messages are valid OpenAI chat completion messages.
"""
# 1. convert all messages to dict
messages = [
cast(AllMessageValues, convert_to_dict(cast(dict, m))) for m in messages
]
# 2. validate user messages
return validate_chat_completion_user_messages(messages=messages)
def validate_chat_completion_user_messages(messages: List[AllMessageValues]):
"""
Ensures all user messages are valid OpenAI chat completion messages.
@ -6229,3 +6261,22 @@ def get_end_user_id_for_cost_tracking(
):
return None
return proxy_server_request.get("body", {}).get("user", None)
def is_prompt_caching_valid_prompt(
model: str,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]] = None,
custom_llm_provider: Optional[str] = None,
) -> bool:
"""
Returns true if the prompt is valid for prompt caching.
OpenAI + Anthropic providers have a minimum token count of 1024 for prompt caching.
"""
if messages is None and tools is None:
return False
if custom_llm_provider is not None and not model.startswith(custom_llm_provider):
model = custom_llm_provider + "/" + model
token_count = token_counter(messages=messages, tools=tools, model=model)
return token_count >= 1024