mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
Litellm dev 01 06 2025 p2 (#7597)
* test(test_amazing_vertex_completion.py): fix test * test: initial working code gecko test * fix(vertex_ai_non_gemini.py): support vertex ai code gecko fake streaming Fixes https://github.com/BerriAI/litellm/issues/7360 * test(test_get_model_info.py): add test for getting custom provider model info Covers https://github.com/BerriAI/litellm/issues/7575 * fix(utils.py): fix get_provider_model_info check Handle custom llm provider scenario Fixes https://github.com/ BerriAI/litellm/issues/7575
This commit is contained in:
parent
b397dc1497
commit
0c3fef24cd
4 changed files with 76 additions and 12 deletions
|
@ -7,6 +7,7 @@ import httpx
|
|||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.llms.bedrock.common_utils import ModelResponseIterator
|
||||
from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS
|
||||
from litellm.types.llms.vertex_ai import *
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
|
||||
|
@ -197,6 +198,7 @@ def completion( # noqa: PLR0915
|
|||
client_options = {
|
||||
"api_endpoint": f"{vertex_location}-aiplatform.googleapis.com"
|
||||
}
|
||||
fake_stream = False
|
||||
if (
|
||||
model in litellm.vertex_language_models
|
||||
or model in litellm.vertex_vision_models
|
||||
|
@ -220,6 +222,7 @@ def completion( # noqa: PLR0915
|
|||
)
|
||||
mode = "text"
|
||||
request_str += f"llm_model = CodeGenerationModel.from_pretrained({model})\n"
|
||||
fake_stream = True
|
||||
elif model in litellm.vertex_code_chat_models: # vertex_code_llm_models
|
||||
llm_model = _vertex_llm_model_object or CodeChatModel.from_pretrained(model)
|
||||
mode = "chat"
|
||||
|
@ -275,17 +278,22 @@ def completion( # noqa: PLR0915
|
|||
return async_completion(**data)
|
||||
|
||||
completion_response = None
|
||||
|
||||
stream = optional_params.pop(
|
||||
"stream", None
|
||||
) # See note above on handling streaming for vertex ai
|
||||
if mode == "chat":
|
||||
chat = llm_model.start_chat()
|
||||
request_str += "chat = llm_model.start_chat()\n"
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] is True:
|
||||
if fake_stream is not True and stream is True:
|
||||
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
|
||||
# we handle this by removing 'stream' from optional params and sending the request
|
||||
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
|
||||
optional_params.pop(
|
||||
"stream", None
|
||||
) # vertex ai raises an error when passing stream in optional params
|
||||
|
||||
request_str += (
|
||||
f"chat.send_message_streaming({prompt}, **{optional_params})\n"
|
||||
)
|
||||
|
@ -298,6 +306,7 @@ def completion( # noqa: PLR0915
|
|||
"request_str": request_str,
|
||||
},
|
||||
)
|
||||
|
||||
model_response = chat.send_message_streaming(prompt, **optional_params)
|
||||
|
||||
return model_response
|
||||
|
@ -314,10 +323,8 @@ def completion( # noqa: PLR0915
|
|||
)
|
||||
completion_response = chat.send_message(prompt, **optional_params).text
|
||||
elif mode == "text":
|
||||
if "stream" in optional_params and optional_params["stream"] is True:
|
||||
optional_params.pop(
|
||||
"stream", None
|
||||
) # See note above on handling streaming for vertex ai
|
||||
|
||||
if fake_stream is not True and stream is True:
|
||||
request_str += (
|
||||
f"llm_model.predict_streaming({prompt}, **{optional_params})\n"
|
||||
)
|
||||
|
@ -384,7 +391,7 @@ def completion( # noqa: PLR0915
|
|||
and "\nOutput:\n" in completion_response
|
||||
):
|
||||
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
||||
if "stream" in optional_params and optional_params["stream"] is True:
|
||||
if stream is True:
|
||||
response = TextStreamer(completion_response)
|
||||
return response
|
||||
elif mode == "private":
|
||||
|
@ -413,7 +420,7 @@ def completion( # noqa: PLR0915
|
|||
and "\nOutput:\n" in completion_response
|
||||
):
|
||||
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
||||
if "stream" in optional_params and optional_params["stream"] is True:
|
||||
if stream is True:
|
||||
response = TextStreamer(completion_response)
|
||||
return response
|
||||
|
||||
|
@ -465,6 +472,9 @@ def completion( # noqa: PLR0915
|
|||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
|
||||
if fake_stream is True and stream is True:
|
||||
return ModelResponseIterator(model_response)
|
||||
return model_response
|
||||
except Exception as e:
|
||||
if isinstance(e, VertexAIError):
|
||||
|
|
|
@ -4224,6 +4224,7 @@ def _get_model_info_helper( # noqa: PLR0915
|
|||
_model_info: Optional[Dict[str, Any]] = None
|
||||
key: Optional[str] = None
|
||||
provider_config: Optional[BaseLLMModelInfo] = None
|
||||
|
||||
if combined_model_name in litellm.model_cost:
|
||||
key = combined_model_name
|
||||
_model_info = _get_model_info_from_model_cost(key=key)
|
||||
|
@ -4263,7 +4264,10 @@ def _get_model_info_helper( # noqa: PLR0915
|
|||
):
|
||||
_model_info = None
|
||||
|
||||
if custom_llm_provider:
|
||||
if custom_llm_provider and custom_llm_provider in [
|
||||
provider.value for provider in LlmProviders
|
||||
]:
|
||||
# Check if the provider string exists in LlmProviders enum
|
||||
provider_config = ProviderConfigManager.get_provider_model_info(
|
||||
model=model, provider=LlmProviders(custom_llm_provider)
|
||||
)
|
||||
|
|
|
@ -930,7 +930,7 @@ from test_completion import response_format_tests
|
|||
"vertex_ai/mistral-large@2407",
|
||||
"vertex_ai/mistral-nemo@2407",
|
||||
"vertex_ai/codestral@2405",
|
||||
"vertex_ai/meta/llama3-405b-instruct-maas",
|
||||
# "vertex_ai/meta/llama3-405b-instruct-maas",
|
||||
], #
|
||||
) # "vertex_ai",
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -960,7 +960,6 @@ async def test_partner_models_httpx(model, sync_mode):
|
|||
"model": model,
|
||||
"messages": messages,
|
||||
"timeout": 10,
|
||||
"mock_response": "Hello, how are you?",
|
||||
}
|
||||
if sync_mode:
|
||||
response = litellm.completion(**data)
|
||||
|
@ -993,7 +992,8 @@ async def test_partner_models_httpx(model, sync_mode):
|
|||
"model",
|
||||
[
|
||||
"vertex_ai/mistral-large@2407",
|
||||
"vertex_ai/meta/llama3-405b-instruct-maas",
|
||||
# "vertex_ai/meta/llama3-405b-instruct-maas",
|
||||
"vertex_ai/codestral@2405",
|
||||
], #
|
||||
) # "vertex_ai",
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -1023,7 +1023,6 @@ async def test_partner_models_httpx_streaming(model, sync_mode):
|
|||
"model": model,
|
||||
"messages": messages,
|
||||
"stream": True,
|
||||
"mock_response": "Hello, how are you?",
|
||||
}
|
||||
if sync_mode:
|
||||
response = litellm.completion(**data)
|
||||
|
@ -3193,3 +3192,16 @@ async def test_vertexai_model_garden_model_completion(
|
|||
assert response.usage.completion_tokens == 109
|
||||
assert response.usage.prompt_tokens == 63
|
||||
assert response.usage.total_tokens == 172
|
||||
|
||||
|
||||
def test_vertexai_code_gecko():
|
||||
litellm.set_verbose = True
|
||||
load_vertex_ai_credentials()
|
||||
response = completion(
|
||||
model="vertex_ai/code-gecko@002",
|
||||
messages=[{"role": "user", "content": "Hello world!"}],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
|
|
|
@ -247,3 +247,41 @@ def test_model_info_bedrock_converse_enforcement(monkeypatch):
|
|||
)
|
||||
except FileNotFoundError as e:
|
||||
pytest.skip("whitelisted_bedrock_models.txt not found")
|
||||
|
||||
|
||||
def test_get_model_info_custom_provider():
|
||||
# Custom provider example copied from https://docs.litellm.ai/docs/providers/custom_llm_server:
|
||||
import litellm
|
||||
from litellm import CustomLLM, completion, get_llm_provider
|
||||
|
||||
class MyCustomLLM(CustomLLM):
|
||||
def completion(self, *args, **kwargs) -> litellm.ModelResponse:
|
||||
return litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Hello world"}],
|
||||
mock_response="Hi!",
|
||||
) # type: ignore
|
||||
|
||||
my_custom_llm = MyCustomLLM()
|
||||
|
||||
litellm.custom_provider_map = [ # 👈 KEY STEP - REGISTER HANDLER
|
||||
{"provider": "my-custom-llm", "custom_handler": my_custom_llm}
|
||||
]
|
||||
|
||||
resp = completion(
|
||||
model="my-custom-llm/my-fake-model",
|
||||
messages=[{"role": "user", "content": "Hello world!"}],
|
||||
)
|
||||
|
||||
assert resp.choices[0].message.content == "Hi!"
|
||||
|
||||
# Register model info
|
||||
model_info = {"my-custom-llm/my-fake-model": {"max_tokens": 2048}}
|
||||
litellm.register_model(model_info)
|
||||
|
||||
# Get registered model info
|
||||
from litellm import get_model_info
|
||||
|
||||
get_model_info(
|
||||
model="my-custom-llm/my-fake-model"
|
||||
) # 💥 "Exception: This model isn't mapped yet." in v1.56.10
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue