mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
fix(router.py): deepcopy initial model list, don't mutate it
This commit is contained in:
parent
5e9286ed41
commit
0cf0c2d6dd
6 changed files with 280 additions and 102 deletions
|
@ -1,3 +1,4 @@
|
||||||
|
from tkinter import N
|
||||||
from typing import Optional, Union, Any
|
from typing import Optional, Union, Any
|
||||||
import types, time, json
|
import types, time, json
|
||||||
import httpx
|
import httpx
|
||||||
|
@ -195,23 +196,23 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
**optional_params
|
**optional_params
|
||||||
}
|
}
|
||||||
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.pre_call(
|
|
||||||
input=messages,
|
|
||||||
api_key=api_key,
|
|
||||||
additional_args={"headers": headers, "api_base": api_base, "acompletion": acompletion, "complete_input_dict": data},
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
max_retries = data.pop("max_retries", 2)
|
max_retries = data.pop("max_retries", 2)
|
||||||
if acompletion is True:
|
if acompletion is True:
|
||||||
if optional_params.get("stream", False):
|
if optional_params.get("stream", False):
|
||||||
return self.async_streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
return self.async_streaming(logging_obj=logging_obj, headers=headers, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
||||||
else:
|
else:
|
||||||
return self.acompletion(data=data, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
return self.acompletion(data=data, headers=headers, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
||||||
elif optional_params.get("stream", False):
|
elif optional_params.get("stream", False):
|
||||||
return self.streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
return self.streaming(logging_obj=logging_obj, headers=headers, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
||||||
else:
|
else:
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(
|
||||||
|
input=messages,
|
||||||
|
api_key=api_key,
|
||||||
|
additional_args={"headers": headers, "api_base": api_base, "acompletion": acompletion, "complete_input_dict": data},
|
||||||
|
)
|
||||||
|
|
||||||
if not isinstance(max_retries, int):
|
if not isinstance(max_retries, int):
|
||||||
raise OpenAIError(status_code=422, message="max retries must be an int")
|
raise OpenAIError(status_code=422, message="max retries must be an int")
|
||||||
if client is None:
|
if client is None:
|
||||||
|
@ -260,6 +261,8 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
api_base: Optional[str]=None,
|
api_base: Optional[str]=None,
|
||||||
client=None,
|
client=None,
|
||||||
max_retries=None,
|
max_retries=None,
|
||||||
|
logging_obj=None,
|
||||||
|
headers=None
|
||||||
):
|
):
|
||||||
response = None
|
response = None
|
||||||
try:
|
try:
|
||||||
|
@ -267,8 +270,21 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
|
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
|
||||||
else:
|
else:
|
||||||
openai_aclient = client
|
openai_aclient = client
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(
|
||||||
|
input=data['messages'],
|
||||||
|
api_key=api_key,
|
||||||
|
additional_args={"headers": headers, "api_base": api_base, "acompletion": True, "complete_input_dict": data},
|
||||||
|
)
|
||||||
response = await openai_aclient.chat.completions.create(**data)
|
response = await openai_aclient.chat.completions.create(**data)
|
||||||
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
|
stringified_response = response.model_dump_json()
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=data['messages'],
|
||||||
|
api_key=api_key,
|
||||||
|
original_response=stringified_response,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if response and hasattr(response, "text"):
|
if response and hasattr(response, "text"):
|
||||||
raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
|
raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
|
||||||
|
@ -286,12 +302,19 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
api_key: Optional[str]=None,
|
api_key: Optional[str]=None,
|
||||||
api_base: Optional[str]=None,
|
api_base: Optional[str]=None,
|
||||||
client = None,
|
client = None,
|
||||||
max_retries=None
|
max_retries=None,
|
||||||
|
headers=None
|
||||||
):
|
):
|
||||||
if client is None:
|
if client is None:
|
||||||
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
|
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
|
||||||
else:
|
else:
|
||||||
openai_client = client
|
openai_client = client
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(
|
||||||
|
input=data['messages'],
|
||||||
|
api_key=api_key,
|
||||||
|
additional_args={"headers": headers, "api_base": api_base, "acompletion": False, "complete_input_dict": data},
|
||||||
|
)
|
||||||
response = openai_client.chat.completions.create(**data)
|
response = openai_client.chat.completions.create(**data)
|
||||||
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||||
return streamwrapper
|
return streamwrapper
|
||||||
|
@ -305,6 +328,7 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
api_base: Optional[str]=None,
|
api_base: Optional[str]=None,
|
||||||
client=None,
|
client=None,
|
||||||
max_retries=None,
|
max_retries=None,
|
||||||
|
headers=None
|
||||||
):
|
):
|
||||||
response = None
|
response = None
|
||||||
try:
|
try:
|
||||||
|
@ -312,6 +336,13 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
|
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
|
||||||
else:
|
else:
|
||||||
openai_aclient = client
|
openai_aclient = client
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(
|
||||||
|
input=data['messages'],
|
||||||
|
api_key=api_key,
|
||||||
|
additional_args={"headers": headers, "api_base": api_base, "acompletion": True, "complete_input_dict": data},
|
||||||
|
)
|
||||||
|
|
||||||
response = await openai_aclient.chat.completions.create(**data)
|
response = await openai_aclient.chat.completions.create(**data)
|
||||||
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||||
async for transformed_chunk in streamwrapper:
|
async for transformed_chunk in streamwrapper:
|
||||||
|
|
|
@ -607,7 +607,7 @@ def completion(
|
||||||
)
|
)
|
||||||
raise e
|
raise e
|
||||||
|
|
||||||
if optional_params.get("stream", False) or acompletion == True:
|
if optional_params.get("stream", False):
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging.post_call(
|
logging.post_call(
|
||||||
input=messages,
|
input=messages,
|
||||||
|
|
|
@ -7,6 +7,7 @@
|
||||||
#
|
#
|
||||||
# Thank you ! We ❤️ you! - Krrish & Ishaan
|
# Thank you ! We ❤️ you! - Krrish & Ishaan
|
||||||
|
|
||||||
|
import copy
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from typing import Dict, List, Optional, Union, Literal, Any
|
from typing import Dict, List, Optional, Union, Literal, Any
|
||||||
import random, threading, time, traceback, uuid
|
import random, threading, time, traceback, uuid
|
||||||
|
@ -879,7 +880,7 @@ class Router:
|
||||||
return chosen_item
|
return chosen_item
|
||||||
|
|
||||||
def set_model_list(self, model_list: list):
|
def set_model_list(self, model_list: list):
|
||||||
self.model_list = model_list
|
self.model_list = copy.deepcopy(model_list)
|
||||||
# we add api_base/api_key each model so load balancing between azure/gpt on api_base1 and api_base2 works
|
# we add api_base/api_key each model so load balancing between azure/gpt on api_base1 and api_base2 works
|
||||||
import os
|
import os
|
||||||
for model in self.model_list:
|
for model in self.model_list:
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
Task exception was never retrieved
|
Task exception was never retrieved
|
||||||
future: <Task finished name='Task-334' coro=<QueryEngine.aclose() done, defined at /opt/homebrew/lib/python3.11/site-packages/prisma/engine/query.py:110> exception=RuntimeError('Event loop is closed')>
|
future: <Task finished name='Task-336' coro=<QueryEngine.aclose() done, defined at /opt/homebrew/lib/python3.11/site-packages/prisma/engine/query.py:110> exception=RuntimeError('Event loop is closed')>
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
File "/opt/homebrew/lib/python3.11/site-packages/prisma/engine/query.py", line 112, in aclose
|
File "/opt/homebrew/lib/python3.11/site-packages/prisma/engine/query.py", line 112, in aclose
|
||||||
await self._close_session()
|
await self._close_session()
|
||||||
|
|
|
@ -61,3 +61,9 @@ model_list:
|
||||||
description: this is a test openai model
|
description: this is a test openai model
|
||||||
id: 34339b1e-e030-4bcc-a531-c48559f10ce4
|
id: 34339b1e-e030-4bcc-a531-c48559f10ce4
|
||||||
model_name: test_openai_models
|
model_name: test_openai_models
|
||||||
|
- litellm_params:
|
||||||
|
model: gpt-3.5-turbo
|
||||||
|
model_info:
|
||||||
|
description: this is a test openai model
|
||||||
|
id: f6f74e14-ac64-4403-9365-319e584dcdc5
|
||||||
|
model_name: test_openai_models
|
||||||
|
|
|
@ -21,10 +21,14 @@ class MyCustomHandler(CustomLogger):
|
||||||
print(f"Pre-API Call")
|
print(f"Pre-API Call")
|
||||||
|
|
||||||
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
|
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
|
||||||
print(f"Post-API Call")
|
print(f"Post-API Call - response object: {response_obj}; model: {kwargs['model']}")
|
||||||
|
|
||||||
|
|
||||||
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
|
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
|
||||||
print(f"On Stream")
|
print(f"On Stream")
|
||||||
|
|
||||||
|
def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
|
||||||
|
print(f"On Stream")
|
||||||
|
|
||||||
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||||
print(f"previous_models: {kwargs['litellm_params']['metadata']['previous_models']}")
|
print(f"previous_models: {kwargs['litellm_params']['metadata']['previous_models']}")
|
||||||
|
@ -41,67 +45,65 @@ class MyCustomHandler(CustomLogger):
|
||||||
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||||
print(f"On Failure")
|
print(f"On Failure")
|
||||||
|
|
||||||
model_list = [
|
|
||||||
{ # list of model deployments
|
|
||||||
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
||||||
"litellm_params": { # params for litellm completion/embedding call
|
|
||||||
"model": "azure/chatgpt-v-2",
|
|
||||||
"api_key": "bad-key",
|
|
||||||
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
||||||
"api_base": os.getenv("AZURE_API_BASE")
|
|
||||||
},
|
|
||||||
"tpm": 240000,
|
|
||||||
"rpm": 1800
|
|
||||||
},
|
|
||||||
{ # list of model deployments
|
|
||||||
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
||||||
"litellm_params": { # params for litellm completion/embedding call
|
|
||||||
"model": "azure/chatgpt-v-2",
|
|
||||||
"api_key": os.getenv("AZURE_API_KEY"),
|
|
||||||
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
||||||
"api_base": os.getenv("AZURE_API_BASE")
|
|
||||||
},
|
|
||||||
"tpm": 240000,
|
|
||||||
"rpm": 1800
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
||||||
"litellm_params": { # params for litellm completion/embedding call
|
|
||||||
"model": "azure/chatgpt-functioncalling",
|
|
||||||
"api_key": "bad-key",
|
|
||||||
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
||||||
"api_base": os.getenv("AZURE_API_BASE")
|
|
||||||
},
|
|
||||||
"tpm": 240000,
|
|
||||||
"rpm": 1800
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"model_name": "gpt-3.5-turbo", # openai model name
|
|
||||||
"litellm_params": { # params for litellm completion/embedding call
|
|
||||||
"model": "gpt-3.5-turbo",
|
|
||||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
||||||
},
|
|
||||||
"tpm": 1000000,
|
|
||||||
"rpm": 9000
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
||||||
"litellm_params": { # params for litellm completion/embedding call
|
|
||||||
"model": "gpt-3.5-turbo-16k",
|
|
||||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
||||||
},
|
|
||||||
"tpm": 1000000,
|
|
||||||
"rpm": 9000
|
|
||||||
}
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
kwargs = {"model": "azure/gpt-3.5-turbo", "messages": [{"role": "user", "content":"Hey, how's it going?"}]}
|
kwargs = {"model": "azure/gpt-3.5-turbo", "messages": [{"role": "user", "content":"Hey, how's it going?"}]}
|
||||||
|
|
||||||
def test_sync_fallbacks():
|
def test_sync_fallbacks():
|
||||||
try:
|
try:
|
||||||
print("Test router_fallbacks: test_sync_fallbacks()")
|
model_list = [
|
||||||
|
{ # list of model deployments
|
||||||
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-v-2",
|
||||||
|
"api_key": "bad-key",
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{ # list of model deployments
|
||||||
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-v-2",
|
||||||
|
"api_key": os.getenv("AZURE_API_KEY"),
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-functioncalling",
|
||||||
|
"api_key": "bad-key",
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "gpt-3.5-turbo",
|
||||||
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||||
|
},
|
||||||
|
"tpm": 1000000,
|
||||||
|
"rpm": 9000
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "gpt-3.5-turbo-16k",
|
||||||
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||||
|
},
|
||||||
|
"tpm": 1000000,
|
||||||
|
"rpm": 9000
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
litellm.set_verbose = True
|
litellm.set_verbose = True
|
||||||
customHandler = MyCustomHandler()
|
customHandler = MyCustomHandler()
|
||||||
litellm.callbacks = [customHandler]
|
litellm.callbacks = [customHandler]
|
||||||
|
@ -123,6 +125,60 @@ def test_sync_fallbacks():
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_async_fallbacks():
|
async def test_async_fallbacks():
|
||||||
litellm.set_verbose = False
|
litellm.set_verbose = False
|
||||||
|
model_list = [
|
||||||
|
{ # list of model deployments
|
||||||
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-v-2",
|
||||||
|
"api_key": "bad-key",
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{ # list of model deployments
|
||||||
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-v-2",
|
||||||
|
"api_key": os.getenv("AZURE_API_KEY"),
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-functioncalling",
|
||||||
|
"api_key": "bad-key",
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "gpt-3.5-turbo",
|
||||||
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||||
|
},
|
||||||
|
"tpm": 1000000,
|
||||||
|
"rpm": 9000
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "gpt-3.5-turbo-16k",
|
||||||
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||||
|
},
|
||||||
|
"tpm": 1000000,
|
||||||
|
"rpm": 9000
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
router = Router(model_list=model_list,
|
router = Router(model_list=model_list,
|
||||||
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
||||||
context_window_fallbacks=[{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}],
|
context_window_fallbacks=[{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}],
|
||||||
|
@ -146,30 +202,6 @@ async def test_async_fallbacks():
|
||||||
|
|
||||||
# test_async_fallbacks()
|
# test_async_fallbacks()
|
||||||
|
|
||||||
## COMMENTING OUT as the context size exceeds both gpt-3.5-turbo and gpt-3.5-turbo-16k, need a better message here
|
|
||||||
# def test_sync_context_window_fallbacks():
|
|
||||||
# try:
|
|
||||||
# customHandler = MyCustomHandler()
|
|
||||||
# litellm.callbacks = [customHandler]
|
|
||||||
# sample_text = "Say error 50 times" * 10000
|
|
||||||
# kwargs["model"] = "azure/gpt-3.5-turbo-context-fallback"
|
|
||||||
# kwargs["messages"] = [{"role": "user", "content": sample_text}]
|
|
||||||
# router = Router(model_list=model_list,
|
|
||||||
# fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
||||||
# context_window_fallbacks=[{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}],
|
|
||||||
# set_verbose=False)
|
|
||||||
# response = router.completion(**kwargs)
|
|
||||||
# print(f"response: {response}")
|
|
||||||
# time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
|
|
||||||
# assert customHandler.previous_models == 1 # 0 retries, 1 fallback
|
|
||||||
# router.reset()
|
|
||||||
# except Exception as e:
|
|
||||||
# print(f"An exception occurred - {e}")
|
|
||||||
# finally:
|
|
||||||
# router.reset()
|
|
||||||
|
|
||||||
# test_sync_context_window_fallbacks()
|
|
||||||
|
|
||||||
def test_dynamic_fallbacks_sync():
|
def test_dynamic_fallbacks_sync():
|
||||||
"""
|
"""
|
||||||
Allow setting the fallback in the router.completion() call.
|
Allow setting the fallback in the router.completion() call.
|
||||||
|
@ -177,6 +209,60 @@ def test_dynamic_fallbacks_sync():
|
||||||
try:
|
try:
|
||||||
customHandler = MyCustomHandler()
|
customHandler = MyCustomHandler()
|
||||||
litellm.callbacks = [customHandler]
|
litellm.callbacks = [customHandler]
|
||||||
|
model_list = [
|
||||||
|
{ # list of model deployments
|
||||||
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-v-2",
|
||||||
|
"api_key": "bad-key",
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{ # list of model deployments
|
||||||
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-v-2",
|
||||||
|
"api_key": os.getenv("AZURE_API_KEY"),
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-functioncalling",
|
||||||
|
"api_key": "bad-key",
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "gpt-3.5-turbo",
|
||||||
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||||
|
},
|
||||||
|
"tpm": 1000000,
|
||||||
|
"rpm": 9000
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "gpt-3.5-turbo-16k",
|
||||||
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||||
|
},
|
||||||
|
"tpm": 1000000,
|
||||||
|
"rpm": 9000
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
router = Router(model_list=model_list, set_verbose=True)
|
router = Router(model_list=model_list, set_verbose=True)
|
||||||
kwargs = {}
|
kwargs = {}
|
||||||
kwargs["model"] = "azure/gpt-3.5-turbo"
|
kwargs["model"] = "azure/gpt-3.5-turbo"
|
||||||
|
@ -198,11 +284,65 @@ async def test_dynamic_fallbacks_async():
|
||||||
Allow setting the fallback in the router.completion() call.
|
Allow setting the fallback in the router.completion() call.
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
print("Router - test_dynamic_fallbacks_async")
|
model_list = [
|
||||||
print("Callbacks in test_dynamic_fallbacks_async: ", litellm.callbacks)
|
{ # list of model deployments
|
||||||
print("Success callbacks in test_dynamic_fallbacks_async: ", litellm.success_callback)
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
||||||
print("Async Success callbacks in test_dynamic_fallbacks_async: ", litellm._async_success_callback)
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
litellm.set_verbose=True
|
"model": "azure/chatgpt-v-2",
|
||||||
|
"api_key": "bad-key",
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{ # list of model deployments
|
||||||
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-v-2",
|
||||||
|
"api_key": os.getenv("AZURE_API_KEY"),
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "azure/chatgpt-functioncalling",
|
||||||
|
"api_key": "bad-key",
|
||||||
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||||
|
"api_base": os.getenv("AZURE_API_BASE")
|
||||||
|
},
|
||||||
|
"tpm": 240000,
|
||||||
|
"rpm": 1800
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "gpt-3.5-turbo", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "gpt-3.5-turbo",
|
||||||
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||||
|
},
|
||||||
|
"tpm": 1000000,
|
||||||
|
"rpm": 9000
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "gpt-3.5-turbo-16k",
|
||||||
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||||
|
},
|
||||||
|
"tpm": 1000000,
|
||||||
|
"rpm": 9000
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
print()
|
||||||
|
print()
|
||||||
|
print()
|
||||||
|
print()
|
||||||
|
print(f"STARTING DYNAMIC ASYNC")
|
||||||
customHandler = MyCustomHandler()
|
customHandler = MyCustomHandler()
|
||||||
litellm.callbacks = [customHandler]
|
litellm.callbacks = [customHandler]
|
||||||
router = Router(model_list=model_list, set_verbose=True)
|
router = Router(model_list=model_list, set_verbose=True)
|
||||||
|
@ -217,4 +357,4 @@ async def test_dynamic_fallbacks_async():
|
||||||
router.reset()
|
router.reset()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pytest.fail(f"An exception occurred - {e}")
|
pytest.fail(f"An exception occurred - {e}")
|
||||||
# test_dynamic_fallbacks_async()
|
# asyncio.run(test_dynamic_fallbacks_async())
|
Loading…
Add table
Add a link
Reference in a new issue