fix(router.py): deepcopy initial model list, don't mutate it

This commit is contained in:
Krrish Dholakia 2023-12-12 09:53:35 -08:00
parent 5e9286ed41
commit 0cf0c2d6dd
6 changed files with 280 additions and 102 deletions

View file

@ -1,3 +1,4 @@
from tkinter import N
from typing import Optional, Union, Any
import types, time, json
import httpx
@ -195,23 +196,23 @@ class OpenAIChatCompletion(BaseLLM):
**optional_params
}
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={"headers": headers, "api_base": api_base, "acompletion": acompletion, "complete_input_dict": data},
)
try:
max_retries = data.pop("max_retries", 2)
if acompletion is True:
if optional_params.get("stream", False):
return self.async_streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
return self.async_streaming(logging_obj=logging_obj, headers=headers, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
else:
return self.acompletion(data=data, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
return self.acompletion(data=data, headers=headers, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
elif optional_params.get("stream", False):
return self.streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
return self.streaming(logging_obj=logging_obj, headers=headers, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
else:
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={"headers": headers, "api_base": api_base, "acompletion": acompletion, "complete_input_dict": data},
)
if not isinstance(max_retries, int):
raise OpenAIError(status_code=422, message="max retries must be an int")
if client is None:
@ -260,6 +261,8 @@ class OpenAIChatCompletion(BaseLLM):
api_base: Optional[str]=None,
client=None,
max_retries=None,
logging_obj=None,
headers=None
):
response = None
try:
@ -267,8 +270,21 @@ class OpenAIChatCompletion(BaseLLM):
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
else:
openai_aclient = client
## LOGGING
logging_obj.pre_call(
input=data['messages'],
api_key=api_key,
additional_args={"headers": headers, "api_base": api_base, "acompletion": True, "complete_input_dict": data},
)
response = await openai_aclient.chat.completions.create(**data)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
stringified_response = response.model_dump_json()
logging_obj.post_call(
input=data['messages'],
api_key=api_key,
original_response=stringified_response,
additional_args={"complete_input_dict": data},
)
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response)
except Exception as e:
if response and hasattr(response, "text"):
raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
@ -286,12 +302,19 @@ class OpenAIChatCompletion(BaseLLM):
api_key: Optional[str]=None,
api_base: Optional[str]=None,
client = None,
max_retries=None
max_retries=None,
headers=None
):
if client is None:
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
else:
openai_client = client
## LOGGING
logging_obj.pre_call(
input=data['messages'],
api_key=api_key,
additional_args={"headers": headers, "api_base": api_base, "acompletion": False, "complete_input_dict": data},
)
response = openai_client.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
return streamwrapper
@ -305,6 +328,7 @@ class OpenAIChatCompletion(BaseLLM):
api_base: Optional[str]=None,
client=None,
max_retries=None,
headers=None
):
response = None
try:
@ -312,6 +336,13 @@ class OpenAIChatCompletion(BaseLLM):
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
else:
openai_aclient = client
## LOGGING
logging_obj.pre_call(
input=data['messages'],
api_key=api_key,
additional_args={"headers": headers, "api_base": api_base, "acompletion": True, "complete_input_dict": data},
)
response = await openai_aclient.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
async for transformed_chunk in streamwrapper:

View file

@ -607,7 +607,7 @@ def completion(
)
raise e
if optional_params.get("stream", False) or acompletion == True:
if optional_params.get("stream", False):
## LOGGING
logging.post_call(
input=messages,

View file

@ -7,6 +7,7 @@
#
# Thank you ! We ❤️ you! - Krrish & Ishaan
import copy
from datetime import datetime
from typing import Dict, List, Optional, Union, Literal, Any
import random, threading, time, traceback, uuid
@ -879,7 +880,7 @@ class Router:
return chosen_item
def set_model_list(self, model_list: list):
self.model_list = model_list
self.model_list = copy.deepcopy(model_list)
# we add api_base/api_key each model so load balancing between azure/gpt on api_base1 and api_base2 works
import os
for model in self.model_list:

View file

@ -1,5 +1,5 @@
Task exception was never retrieved
future: <Task finished name='Task-334' coro=<QueryEngine.aclose() done, defined at /opt/homebrew/lib/python3.11/site-packages/prisma/engine/query.py:110> exception=RuntimeError('Event loop is closed')>
future: <Task finished name='Task-336' coro=<QueryEngine.aclose() done, defined at /opt/homebrew/lib/python3.11/site-packages/prisma/engine/query.py:110> exception=RuntimeError('Event loop is closed')>
Traceback (most recent call last):
File "/opt/homebrew/lib/python3.11/site-packages/prisma/engine/query.py", line 112, in aclose
await self._close_session()

View file

@ -61,3 +61,9 @@ model_list:
description: this is a test openai model
id: 34339b1e-e030-4bcc-a531-c48559f10ce4
model_name: test_openai_models
- litellm_params:
model: gpt-3.5-turbo
model_info:
description: this is a test openai model
id: f6f74e14-ac64-4403-9365-319e584dcdc5
model_name: test_openai_models

View file

@ -21,10 +21,14 @@ class MyCustomHandler(CustomLogger):
print(f"Pre-API Call")
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(f"Post-API Call")
print(f"Post-API Call - response object: {response_obj}; model: {kwargs['model']}")
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"previous_models: {kwargs['litellm_params']['metadata']['previous_models']}")
@ -41,67 +45,65 @@ class MyCustomHandler(CustomLogger):
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}
]
kwargs = {"model": "azure/gpt-3.5-turbo", "messages": [{"role": "user", "content":"Hey, how's it going?"}]}
def test_sync_fallbacks():
try:
print("Test router_fallbacks: test_sync_fallbacks()")
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}
]
litellm.set_verbose = True
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
@ -123,6 +125,60 @@ def test_sync_fallbacks():
@pytest.mark.asyncio
async def test_async_fallbacks():
litellm.set_verbose = False
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}
]
router = Router(model_list=model_list,
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
context_window_fallbacks=[{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}],
@ -146,30 +202,6 @@ async def test_async_fallbacks():
# test_async_fallbacks()
## COMMENTING OUT as the context size exceeds both gpt-3.5-turbo and gpt-3.5-turbo-16k, need a better message here
# def test_sync_context_window_fallbacks():
# try:
# customHandler = MyCustomHandler()
# litellm.callbacks = [customHandler]
# sample_text = "Say error 50 times" * 10000
# kwargs["model"] = "azure/gpt-3.5-turbo-context-fallback"
# kwargs["messages"] = [{"role": "user", "content": sample_text}]
# router = Router(model_list=model_list,
# fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
# context_window_fallbacks=[{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}],
# set_verbose=False)
# response = router.completion(**kwargs)
# print(f"response: {response}")
# time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
# assert customHandler.previous_models == 1 # 0 retries, 1 fallback
# router.reset()
# except Exception as e:
# print(f"An exception occurred - {e}")
# finally:
# router.reset()
# test_sync_context_window_fallbacks()
def test_dynamic_fallbacks_sync():
"""
Allow setting the fallback in the router.completion() call.
@ -177,6 +209,60 @@ def test_dynamic_fallbacks_sync():
try:
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}
]
router = Router(model_list=model_list, set_verbose=True)
kwargs = {}
kwargs["model"] = "azure/gpt-3.5-turbo"
@ -198,11 +284,65 @@ async def test_dynamic_fallbacks_async():
Allow setting the fallback in the router.completion() call.
"""
try:
print("Router - test_dynamic_fallbacks_async")
print("Callbacks in test_dynamic_fallbacks_async: ", litellm.callbacks)
print("Success callbacks in test_dynamic_fallbacks_async: ", litellm.success_callback)
print("Async Success callbacks in test_dynamic_fallbacks_async: ", litellm._async_success_callback)
litellm.set_verbose=True
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}
]
print()
print()
print()
print()
print(f"STARTING DYNAMIC ASYNC")
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
router = Router(model_list=model_list, set_verbose=True)
@ -217,4 +357,4 @@ async def test_dynamic_fallbacks_async():
router.reset()
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
# test_dynamic_fallbacks_async()
# asyncio.run(test_dynamic_fallbacks_async())