mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
refactor(bedrock.py): take model names from model cost dict
This commit is contained in:
parent
152ffca815
commit
0d863f00ad
6 changed files with 21 additions and 15 deletions
|
@ -29,7 +29,7 @@ os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
|||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
||||
response = completion(
|
||||
model="bedrock/anthropic.claude-instant-v1",
|
||||
model="anthropic.claude-instant-v1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}]
|
||||
)
|
||||
```
|
||||
|
@ -41,7 +41,7 @@ import os
|
|||
from litellm import completion
|
||||
|
||||
response = completion(
|
||||
model="bedrock/anthropic.claude-instant-v1",
|
||||
model="anthropic.claude-instant-v1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
aws_access_key_id="",
|
||||
aws_secret_access_key="",
|
||||
|
@ -66,7 +66,7 @@ bedrock = boto3.client(
|
|||
)
|
||||
|
||||
response = completion(
|
||||
model="bedrock/anthropic.claude-instant-v1",
|
||||
model="anthropic.claude-instant-v1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
aws_bedrock_client=bedrock,
|
||||
)
|
||||
|
@ -84,7 +84,7 @@ bedrock = dev_session.client(
|
|||
)
|
||||
|
||||
response = completion(
|
||||
model="bedrock/anthropic.claude-instant-v1",
|
||||
model="anthropic.claude-instant-v1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
aws_bedrock_client=bedrock,
|
||||
)
|
||||
|
@ -95,11 +95,14 @@ Here's an example of using a bedrock model with LiteLLM
|
|||
|
||||
| Model Name | Command | Environment Variables |
|
||||
|--------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|
|
||||
| Anthropic Claude-V2 | `completion(model='bedrock/anthropic.claude-v2', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
|
||||
| Anthropic Claude-Instant V1 | `completion(model='bedrock/anthropic.claude-instant-v1', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
|
||||
| Anthropic Claude-V1 | `completion(model='bedrock/anthropic.claude-v1', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
|
||||
| AI21 J2-Ultra | `completion(model='bedrock/ai21.j2-ultra', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
|
||||
| AI21 J2-Mid | `completion(model='bedrock/ai21.j2-mid', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
|
||||
| Anthropic Claude-V2 | `completion(model='anthropic.claude-v2', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
|
||||
| Anthropic Claude-Instant V1 | `completion(model='anthropic.claude-instant-v1', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
|
||||
| Anthropic Claude-V1 | `completion(model='anthropic.claude-v1', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
|
||||
| Amazon Titan Lite | `completion(model='amazon.titan-text-lite-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
|
||||
| Amazon Titan Express | `completion(model='amazon.titan-text-express-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
|
||||
| Cohere Command | `completion(model='cohere.command-text-v14', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
|
||||
| AI21 J2-Mid | `completion(model='ai21.j2-mid-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
|
||||
| AI21 J2-Ultra | `completion(model='ai21.j2-ultra-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
|
||||
|
||||
|
||||
## Streaming
|
||||
|
|
|
@ -94,6 +94,7 @@ vertex_code_text_models: List = []
|
|||
ai21_models: List = []
|
||||
nlp_cloud_models: List = []
|
||||
aleph_alpha_models: List = []
|
||||
bedrock_models: List = []
|
||||
for key, value in model_cost.items():
|
||||
if value.get('litellm_provider') == 'openai':
|
||||
open_ai_chat_completion_models.append(key)
|
||||
|
@ -120,6 +121,8 @@ for key, value in model_cost.items():
|
|||
nlp_cloud_models.append(key)
|
||||
elif value.get('litellm_provider') == 'aleph_alpha':
|
||||
aleph_alpha_models.append(key)
|
||||
elif value.get('litellm_provider') == 'bedrock':
|
||||
bedrock_models.append(key)
|
||||
|
||||
# well supported replicate llms
|
||||
replicate_models: List = [
|
||||
|
@ -196,11 +199,6 @@ petals_models = [
|
|||
"petals-team/StableBeluga2",
|
||||
]
|
||||
|
||||
bedrock_models: List = [
|
||||
"amazon.titan-tg1-large",
|
||||
"ai21.j2-grande-instruct"
|
||||
]
|
||||
|
||||
ollama_models = [
|
||||
"llama2"
|
||||
]
|
||||
|
|
Binary file not shown.
Binary file not shown.
|
@ -806,7 +806,7 @@ def test_completion_bedrock_claude():
|
|||
print("calling claude")
|
||||
try:
|
||||
response = completion(
|
||||
model="bedrock/anthropic.claude-instant-v1",
|
||||
model="anthropic.claude-instant-v1",
|
||||
messages=messages,
|
||||
max_tokens=10,
|
||||
temperature=0.1,
|
||||
|
|
|
@ -1409,8 +1409,13 @@ def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None):
|
|||
## petals
|
||||
elif model in litellm.petals_models:
|
||||
custom_llm_provider = "petals"
|
||||
## bedrock
|
||||
elif model in litellm.bedrock_models:
|
||||
custom_llm_provider = "bedrock"
|
||||
# openai embeddings
|
||||
elif model in litellm.open_ai_embedding_models:
|
||||
custom_llm_provider = "openai"
|
||||
# cohere embeddings
|
||||
elif model in litellm.cohere_embedding_models:
|
||||
custom_llm_provider = "cohere"
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue