mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
fixes to get optional params
This commit is contained in:
parent
8b60d797e1
commit
0daf2e3880
9 changed files with 86 additions and 90 deletions
|
@ -6,6 +6,7 @@ import time
|
|||
from typing import Callable
|
||||
from litellm.utils import ModelResponse, get_secret
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
|
||||
class SagemakerError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
|
@ -60,9 +61,12 @@ def completion(
|
|||
)
|
||||
else:
|
||||
prompt += f"{message['content']}"
|
||||
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
|
||||
inference_params = deepcopy(optional_params)
|
||||
inference_params.pop("stream", None)
|
||||
data = {
|
||||
"inputs": prompt,
|
||||
"parameters": optional_params
|
||||
"parameters": inference_params
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
|
@ -79,46 +83,43 @@ def completion(
|
|||
CustomAttributes="accept_eula=true",
|
||||
)
|
||||
response = response["Body"].read().decode("utf8")
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = json.loads(response)
|
||||
if "error" in completion_response:
|
||||
raise SagemakerError(
|
||||
message=completion_response["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response[0]["generation"]
|
||||
except:
|
||||
raise SagemakerError(message=json.dumps(completion_response), status_code=response.status_code)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = json.loads(response)
|
||||
if "error" in completion_response:
|
||||
raise SagemakerError(
|
||||
message=completion_response["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response[0]["generation"]
|
||||
except:
|
||||
raise SagemakerError(message=json.dumps(completion_response), status_code=response.status_code)
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue