mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
Fix wrong import and use space_id instead of space_key for Arize integration
This commit is contained in:
parent
f8ac675321
commit
0dfc21e80a
11 changed files with 221 additions and 186 deletions
|
@ -105,11 +105,16 @@
|
|||
"import os\n",
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"os.environ[\"ARIZE_SPACE_KEY\"] = getpass(\"Enter your Arize space key: \")\n",
|
||||
"os.environ[\"ARIZE_SPACE_ID\"] = getpass(\"Enter your Arize space id: \")\n",
|
||||
"os.environ[\"ARIZE_API_KEY\"] = getpass(\"Enter your Arize API key: \")\n",
|
||||
"os.environ['OPENAI_API_KEY']= getpass(\"Enter your OpenAI API key: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
|
|
@ -11,12 +11,12 @@ https://github.com/BerriAI/litellm
|
|||
|
||||
:::
|
||||
|
||||
|
||||
|
||||
## Pre-Requisites
|
||||
|
||||
Make an account on [Arize AI](https://app.arize.com/auth/login)
|
||||
|
||||
## Quick Start
|
||||
|
||||
Use just 2 lines of code, to instantly log your responses **across all providers** with arize
|
||||
|
||||
You can also use the instrumentor option instead of the callback, which you can find [here](https://docs.arize.com/arize/llm-tracing/tracing-integrations-auto/litellm).
|
||||
|
@ -24,11 +24,12 @@ You can also use the instrumentor option instead of the callback, which you can
|
|||
```python
|
||||
litellm.callbacks = ["arize"]
|
||||
```
|
||||
|
||||
```python
|
||||
import litellm
|
||||
import os
|
||||
|
||||
os.environ["ARIZE_SPACE_KEY"] = ""
|
||||
os.environ["ARIZE_SPACE_ID"] = ""
|
||||
os.environ["ARIZE_API_KEY"] = ""
|
||||
|
||||
# LLM API Keys
|
||||
|
@ -36,7 +37,7 @@ os.environ['OPENAI_API_KEY']=""
|
|||
|
||||
# set arize as a callback, litellm will send the data to arize
|
||||
litellm.callbacks = ["arize"]
|
||||
|
||||
|
||||
# openai call
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
|
@ -48,7 +49,6 @@ response = litellm.completion(
|
|||
|
||||
### Using with LiteLLM Proxy
|
||||
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-4
|
||||
|
@ -61,10 +61,10 @@ litellm_settings:
|
|||
callbacks: ["arize"]
|
||||
|
||||
environment_variables:
|
||||
ARIZE_SPACE_KEY: "d0*****"
|
||||
ARIZE_API_KEY: "141a****"
|
||||
ARIZE_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize GRPC api endpoint
|
||||
ARIZE_HTTP_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize HTTP api endpoint. Set either this or ARIZE_ENDPOINT
|
||||
ARIZE_SPACE_ID: "d0*****"
|
||||
ARIZE_API_KEY: "141a****"
|
||||
ARIZE_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize GRPC api endpoint
|
||||
ARIZE_HTTP_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize HTTP api endpoint. Set either this or ARIZE_ENDPOINT
|
||||
```
|
||||
|
||||
## Support & Talk to Founders
|
||||
|
|
|
@ -302,7 +302,7 @@ router_settings:
|
|||
| AISPEND_API_KEY | API Key for AI Spend
|
||||
| ALLOWED_EMAIL_DOMAINS | List of email domains allowed for access
|
||||
| ARIZE_API_KEY | API key for Arize platform integration
|
||||
| ARIZE_SPACE_KEY | Space key for Arize platform
|
||||
| ARIZE_SPACE_ID | Space key for Arize platform
|
||||
| ARGILLA_BATCH_SIZE | Batch size for Argilla logging
|
||||
| ARGILLA_API_KEY | API key for Argilla platform
|
||||
| ARGILLA_SAMPLING_RATE | Sampling rate for Argilla logging
|
||||
|
|
|
@ -17,8 +17,6 @@ Log Proxy input, output, and exceptions using:
|
|||
- DynamoDB
|
||||
- etc.
|
||||
|
||||
|
||||
|
||||
## Getting the LiteLLM Call ID
|
||||
|
||||
LiteLLM generates a unique `call_id` for each request. This `call_id` can be
|
||||
|
@ -52,31 +50,29 @@ A number of these headers could be useful for troubleshooting, but the
|
|||
`x-litellm-call-id` is the one that is most useful for tracking a request across
|
||||
components in your system, including in logging tools.
|
||||
|
||||
|
||||
## Logging Features
|
||||
|
||||
### Conditional Logging by Virtual Keys, Teams
|
||||
|
||||
Use this to:
|
||||
|
||||
1. Conditionally enable logging for some virtual keys/teams
|
||||
2. Set different logging providers for different virtual keys/teams
|
||||
|
||||
[👉 **Get Started** - Team/Key Based Logging](team_logging)
|
||||
|
||||
### Redacting UserAPIKeyInfo
|
||||
|
||||
### Redacting UserAPIKeyInfo
|
||||
|
||||
Redact information about the user api key (hashed token, user_id, team id, etc.), from logs.
|
||||
Redact information about the user api key (hashed token, user_id, team id, etc.), from logs.
|
||||
|
||||
Currently supported for Langfuse, OpenTelemetry, Logfire, ArizeAI logging.
|
||||
|
||||
```yaml
|
||||
litellm_settings:
|
||||
litellm_settings:
|
||||
callbacks: ["langfuse"]
|
||||
redact_user_api_key_info: true
|
||||
```
|
||||
|
||||
|
||||
### Redact Messages, Response Content
|
||||
|
||||
Set `litellm.turn_off_message_logging=True` This will prevent the messages and responses from being logged to your logging provider, but request metadata - e.g. spend, will still be tracked.
|
||||
|
@ -86,6 +82,7 @@ Set `litellm.turn_off_message_logging=True` This will prevent the messages and r
|
|||
<TabItem value="global" label="Global">
|
||||
|
||||
**1. Setup config.yaml **
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
|
@ -97,6 +94,7 @@ litellm_settings:
|
|||
```
|
||||
|
||||
**2. Send request**
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
|
@ -111,14 +109,12 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}'
|
||||
```
|
||||
|
||||
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="dynamic" label="Per Request">
|
||||
|
||||
:::info
|
||||
|
||||
Dynamic request message redaction is in BETA.
|
||||
Dynamic request message redaction is in BETA.
|
||||
|
||||
:::
|
||||
|
||||
|
@ -170,13 +166,11 @@ curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
|
|||
|
||||
<Image img={require('../../img/message_redaction_spend_logs.png')} />
|
||||
|
||||
|
||||
### Disable Message Redaction
|
||||
|
||||
If you have `litellm.turn_on_message_logging` turned on, you can override it for specific requests by
|
||||
setting a request header `LiteLLM-Disable-Message-Redaction: true`.
|
||||
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
|
@ -192,7 +186,6 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}'
|
||||
```
|
||||
|
||||
|
||||
### Turn off all tracking/logging
|
||||
|
||||
For some use cases, you may want to turn off all tracking/logging. You can do this by passing `no-log=True` in the request body.
|
||||
|
@ -205,6 +198,7 @@ Disable this by setting `global_disable_no_log_param:true` in your config.yaml f
|
|||
litellm_settings:
|
||||
global_disable_no_log_param: True
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
<Tabs>
|
||||
|
@ -262,13 +256,12 @@ print(response)
|
|||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
**Expected Console Log**
|
||||
**Expected Console Log**
|
||||
|
||||
```
|
||||
LiteLLM.Info: "no-log request, skipping logging"
|
||||
```
|
||||
|
||||
|
||||
## What gets logged?
|
||||
|
||||
Found under `kwargs["standard_logging_object"]`. This is a standard payload, logged for every response.
|
||||
|
@ -431,10 +424,8 @@ print(response)
|
|||
|
||||
Set `tags` as part of your request body
|
||||
|
||||
|
||||
<Tabs>
|
||||
|
||||
|
||||
<TabItem value="openai" label="OpenAI Python v1.0.0+">
|
||||
|
||||
```python
|
||||
|
@ -462,6 +453,7 @@ response = client.chat.completions.create(
|
|||
|
||||
print(response)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="Curl" label="Curl Request">
|
||||
|
@ -486,6 +478,7 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="langchain" label="Langchain">
|
||||
|
||||
|
@ -528,28 +521,26 @@ print(response)
|
|||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
|
||||
### LiteLLM Tags - `cache_hit`, `cache_key`
|
||||
|
||||
Use this if you want to control which LiteLLM-specific fields are logged as tags by the LiteLLM proxy. By default LiteLLM Proxy logs no LiteLLM-specific fields
|
||||
|
||||
| LiteLLM specific field | Description | Example Value |
|
||||
|------------------------|-------------------------------------------------------|------------------------------------------------|
|
||||
| `cache_hit` | Indicates whether a cache hit occured (True) or not (False) | `true`, `false` |
|
||||
| `cache_key` | The Cache key used for this request | `d2b758c****`|
|
||||
| `proxy_base_url` | The base URL for the proxy server, the value of env var `PROXY_BASE_URL` on your server | `https://proxy.example.com`|
|
||||
| `user_api_key_alias` | An alias for the LiteLLM Virtual Key.| `prod-app1` |
|
||||
| `user_api_key_user_id` | The unique ID associated with a user's API key. | `user_123`, `user_456` |
|
||||
| `user_api_key_user_email` | The email associated with a user's API key. | `user@example.com`, `admin@example.com` |
|
||||
| `user_api_key_team_alias` | An alias for a team associated with an API key. | `team_alpha`, `dev_team` |
|
||||
|
||||
| LiteLLM specific field | Description | Example Value |
|
||||
| ------------------------- | --------------------------------------------------------------------------------------- | --------------------------------------- |
|
||||
| `cache_hit` | Indicates whether a cache hit occured (True) or not (False) | `true`, `false` |
|
||||
| `cache_key` | The Cache key used for this request | `d2b758c****` |
|
||||
| `proxy_base_url` | The base URL for the proxy server, the value of env var `PROXY_BASE_URL` on your server | `https://proxy.example.com` |
|
||||
| `user_api_key_alias` | An alias for the LiteLLM Virtual Key. | `prod-app1` |
|
||||
| `user_api_key_user_id` | The unique ID associated with a user's API key. | `user_123`, `user_456` |
|
||||
| `user_api_key_user_email` | The email associated with a user's API key. | `user@example.com`, `admin@example.com` |
|
||||
| `user_api_key_team_alias` | An alias for a team associated with an API key. | `team_alpha`, `dev_team` |
|
||||
|
||||
**Usage**
|
||||
|
||||
Specify `langfuse_default_tags` to control what litellm fields get logged on Langfuse
|
||||
|
||||
Example config.yaml
|
||||
Example config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-4
|
||||
|
@ -562,12 +553,23 @@ litellm_settings:
|
|||
success_callback: ["langfuse"]
|
||||
|
||||
# 👇 Key Change
|
||||
langfuse_default_tags: ["cache_hit", "cache_key", "proxy_base_url", "user_api_key_alias", "user_api_key_user_id", "user_api_key_user_email", "user_api_key_team_alias", "semantic-similarity", "proxy_base_url"]
|
||||
langfuse_default_tags:
|
||||
[
|
||||
"cache_hit",
|
||||
"cache_key",
|
||||
"proxy_base_url",
|
||||
"user_api_key_alias",
|
||||
"user_api_key_user_id",
|
||||
"user_api_key_user_email",
|
||||
"user_api_key_team_alias",
|
||||
"semantic-similarity",
|
||||
"proxy_base_url",
|
||||
]
|
||||
```
|
||||
|
||||
### View POST sent from LiteLLM to provider
|
||||
|
||||
Use this when you want to view the RAW curl request sent from LiteLLM to the LLM API
|
||||
Use this when you want to view the RAW curl request sent from LiteLLM to the LLM API
|
||||
|
||||
<Tabs>
|
||||
|
||||
|
@ -670,7 +672,7 @@ You will see `raw_request` in your Langfuse Metadata. This is the RAW CURL comma
|
|||
|
||||
## OpenTelemetry
|
||||
|
||||
:::info
|
||||
:::info
|
||||
|
||||
[Optional] Customize OTEL Service Name and OTEL TRACER NAME by setting the following variables in your environment
|
||||
|
||||
|
@ -730,30 +732,30 @@ This is the Span from OTEL Logging
|
|||
|
||||
```json
|
||||
{
|
||||
"name": "litellm-acompletion",
|
||||
"context": {
|
||||
"trace_id": "0x8d354e2346060032703637a0843b20a3",
|
||||
"span_id": "0xd8d3476a2eb12724",
|
||||
"trace_state": "[]"
|
||||
},
|
||||
"kind": "SpanKind.INTERNAL",
|
||||
"parent_id": null,
|
||||
"start_time": "2024-06-04T19:46:56.415888Z",
|
||||
"end_time": "2024-06-04T19:46:56.790278Z",
|
||||
"status": {
|
||||
"status_code": "OK"
|
||||
},
|
||||
"name": "litellm-acompletion",
|
||||
"context": {
|
||||
"trace_id": "0x8d354e2346060032703637a0843b20a3",
|
||||
"span_id": "0xd8d3476a2eb12724",
|
||||
"trace_state": "[]"
|
||||
},
|
||||
"kind": "SpanKind.INTERNAL",
|
||||
"parent_id": null,
|
||||
"start_time": "2024-06-04T19:46:56.415888Z",
|
||||
"end_time": "2024-06-04T19:46:56.790278Z",
|
||||
"status": {
|
||||
"status_code": "OK"
|
||||
},
|
||||
"attributes": {
|
||||
"model": "llama3-8b-8192"
|
||||
},
|
||||
"events": [],
|
||||
"links": [],
|
||||
"resource": {
|
||||
"attributes": {
|
||||
"model": "llama3-8b-8192"
|
||||
"service.name": "litellm"
|
||||
},
|
||||
"events": [],
|
||||
"links": [],
|
||||
"resource": {
|
||||
"attributes": {
|
||||
"service.name": "litellm"
|
||||
},
|
||||
"schema_url": ""
|
||||
}
|
||||
"schema_url": ""
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -965,6 +967,7 @@ callback_settings:
|
|||
```
|
||||
|
||||
### Traceparent Header
|
||||
|
||||
##### Context propagation across Services `Traceparent HTTP Header`
|
||||
|
||||
❓ Use this when you want to **pass information about the incoming request in a distributed tracing system**
|
||||
|
@ -1042,25 +1045,23 @@ Log LLM Logs to [Google Cloud Storage Buckets](https://cloud.google.com/storage?
|
|||
|
||||
:::
|
||||
|
||||
|
||||
| Property | Details |
|
||||
|----------|---------|
|
||||
| Description | Log LLM Input/Output to cloud storage buckets |
|
||||
| Load Test Benchmarks | [Benchmarks](https://docs.litellm.ai/docs/benchmarks) |
|
||||
| Property | Details |
|
||||
| ---------------------------- | -------------------------------------------------------------- |
|
||||
| Description | Log LLM Input/Output to cloud storage buckets |
|
||||
| Load Test Benchmarks | [Benchmarks](https://docs.litellm.ai/docs/benchmarks) |
|
||||
| Google Docs on Cloud Storage | [Google Cloud Storage](https://cloud.google.com/storage?hl=en) |
|
||||
|
||||
|
||||
|
||||
#### Usage
|
||||
|
||||
1. Add `gcs_bucket` to LiteLLM Config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- litellm_params:
|
||||
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||
api_key: my-fake-key
|
||||
model: openai/my-fake-model
|
||||
model_name: fake-openai-endpoint
|
||||
- litellm_params:
|
||||
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||
api_key: my-fake-key
|
||||
model: openai/my-fake-model
|
||||
model_name: fake-openai-endpoint
|
||||
|
||||
litellm_settings:
|
||||
callbacks: ["gcs_bucket"] # 👈 KEY CHANGE # 👈 KEY CHANGE
|
||||
|
@ -1079,7 +1080,7 @@ GCS_PATH_SERVICE_ACCOUNT="/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956e
|
|||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
4. Test it!
|
||||
4. Test it!
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
|
@ -1096,7 +1097,6 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
'
|
||||
```
|
||||
|
||||
|
||||
#### Expected Logs on GCS Buckets
|
||||
|
||||
<Image img={require('../../img/gcs_bucket.png')} />
|
||||
|
@ -1105,7 +1105,6 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
|
||||
[**The standard logging object is logged on GCS Bucket**](../proxy/logging_spec)
|
||||
|
||||
|
||||
#### Getting `service_account.json` from Google Cloud Console
|
||||
|
||||
1. Go to [Google Cloud Console](https://console.cloud.google.com/)
|
||||
|
@ -1115,8 +1114,6 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
5. Click on 'Keys' -> Add Key -> Create New Key -> JSON
|
||||
6. Save the JSON file and add the path to `GCS_PATH_SERVICE_ACCOUNT`
|
||||
|
||||
|
||||
|
||||
## Google Cloud Storage - PubSub Topic
|
||||
|
||||
Log LLM Logs/SpendLogs to [Google Cloud Storage PubSub Topic](https://cloud.google.com/pubsub/docs/reference/rest)
|
||||
|
@ -1127,26 +1124,25 @@ Log LLM Logs/SpendLogs to [Google Cloud Storage PubSub Topic](https://cloud.goog
|
|||
|
||||
:::
|
||||
|
||||
|
||||
| Property | Details |
|
||||
|----------|---------|
|
||||
| Property | Details |
|
||||
| ----------- | ------------------------------------------------------------------ |
|
||||
| Description | Log LiteLLM `SpendLogs Table` to Google Cloud Storage PubSub Topic |
|
||||
|
||||
When to use `gcs_pubsub`?
|
||||
|
||||
- If your LiteLLM Database has crossed 1M+ spend logs and you want to send `SpendLogs` to a PubSub Topic that can be consumed by GCS BigQuery
|
||||
|
||||
|
||||
#### Usage
|
||||
|
||||
1. Add `gcs_pubsub` to LiteLLM Config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- litellm_params:
|
||||
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||
api_key: my-fake-key
|
||||
model: openai/my-fake-model
|
||||
model_name: fake-openai-endpoint
|
||||
- litellm_params:
|
||||
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||
api_key: my-fake-key
|
||||
model: openai/my-fake-model
|
||||
model_name: fake-openai-endpoint
|
||||
|
||||
litellm_settings:
|
||||
callbacks: ["gcs_pubsub"] # 👈 KEY CHANGE # 👈 KEY CHANGE
|
||||
|
@ -1165,7 +1161,7 @@ GCS_PUBSUB_PROJECT_ID="reliableKeys"
|
|||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
4. Test it!
|
||||
4. Test it!
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
|
@ -1182,13 +1178,11 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
'
|
||||
```
|
||||
|
||||
|
||||
|
||||
## s3 Buckets
|
||||
|
||||
We will use the `--config` to set
|
||||
We will use the `--config` to set
|
||||
|
||||
- `litellm.success_callback = ["s3"]`
|
||||
- `litellm.success_callback = ["s3"]`
|
||||
|
||||
This will log all successfull LLM calls to s3 Bucket
|
||||
|
||||
|
@ -1276,17 +1270,15 @@ Log LLM Logs to [Azure Data Lake Storage](https://learn.microsoft.com/en-us/azur
|
|||
|
||||
:::
|
||||
|
||||
|
||||
| Property | Details |
|
||||
|----------|---------|
|
||||
| Description | Log LLM Input/Output to Azure Blob Storag (Bucket) |
|
||||
| Property | Details |
|
||||
| ------------------------------- | --------------------------------------------------------------------------------------------------------------- |
|
||||
| Description | Log LLM Input/Output to Azure Blob Storag (Bucket) |
|
||||
| Azure Docs on Data Lake Storage | [Azure Data Lake Storage](https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction) |
|
||||
|
||||
|
||||
|
||||
#### Usage
|
||||
|
||||
1. Add `azure_storage` to LiteLLM Config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: fake-openai-endpoint
|
||||
|
@ -1322,7 +1314,7 @@ AZURE_STORAGE_CLIENT_SECRET="uMS8Qxxxxxxxxxx" # The Application Client Secret to
|
|||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
4. Test it!
|
||||
4. Test it!
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
|
@ -1339,7 +1331,6 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
'
|
||||
```
|
||||
|
||||
|
||||
#### Expected Logs on Azure Data Lake Storage
|
||||
|
||||
<Image img={require('../../img/azure_blob.png')} />
|
||||
|
@ -1348,11 +1339,10 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
|
||||
[**The standard logging object is logged on Azure Data Lake Storage**](../proxy/logging_spec)
|
||||
|
||||
|
||||
|
||||
## DataDog
|
||||
|
||||
LiteLLM Supports logging to the following Datdog Integrations:
|
||||
|
||||
- `datadog` [Datadog Logs](https://docs.datadoghq.com/logs/)
|
||||
- `datadog_llm_observability` [Datadog LLM Observability](https://www.datadoghq.com/product/llm-observability/)
|
||||
- `ddtrace-run` [Datadog Tracing](#datadog-tracing)
|
||||
|
@ -1447,26 +1437,29 @@ docker run \
|
|||
|
||||
LiteLLM supports customizing the following Datadog environment variables
|
||||
|
||||
| Environment Variable | Description | Default Value | Required |
|
||||
|---------------------|-------------|---------------|----------|
|
||||
| `DD_API_KEY` | Your Datadog API key for authentication | None | ✅ Yes |
|
||||
| `DD_SITE` | Your Datadog site (e.g., "us5.datadoghq.com") | None | ✅ Yes |
|
||||
| `DD_ENV` | Environment tag for your logs (e.g., "production", "staging") | "unknown" | ❌ No |
|
||||
| `DD_SERVICE` | Service name for your logs | "litellm-server" | ❌ No |
|
||||
| `DD_SOURCE` | Source name for your logs | "litellm" | ❌ No |
|
||||
| `DD_VERSION` | Version tag for your logs | "unknown" | ❌ No |
|
||||
| `HOSTNAME` | Hostname tag for your logs | "" | ❌ No |
|
||||
| `POD_NAME` | Pod name tag (useful for Kubernetes deployments) | "unknown" | ❌ No |
|
||||
|
||||
| Environment Variable | Description | Default Value | Required |
|
||||
| -------------------- | ------------------------------------------------------------- | ---------------- | -------- |
|
||||
| `DD_API_KEY` | Your Datadog API key for authentication | None | ✅ Yes |
|
||||
| `DD_SITE` | Your Datadog site (e.g., "us5.datadoghq.com") | None | ✅ Yes |
|
||||
| `DD_ENV` | Environment tag for your logs (e.g., "production", "staging") | "unknown" | ❌ No |
|
||||
| `DD_SERVICE` | Service name for your logs | "litellm-server" | ❌ No |
|
||||
| `DD_SOURCE` | Source name for your logs | "litellm" | ❌ No |
|
||||
| `DD_VERSION` | Version tag for your logs | "unknown" | ❌ No |
|
||||
| `HOSTNAME` | Hostname tag for your logs | "" | ❌ No |
|
||||
| `POD_NAME` | Pod name tag (useful for Kubernetes deployments) | "unknown" | ❌ No |
|
||||
|
||||
## Lunary
|
||||
#### Step1: Install dependencies and set your environment variables
|
||||
|
||||
#### Step1: Install dependencies and set your environment variables
|
||||
|
||||
Install the dependencies
|
||||
|
||||
```shell
|
||||
pip install litellm lunary
|
||||
```
|
||||
|
||||
Get you Lunary public key from from https://app.lunary.ai/settings
|
||||
Get you Lunary public key from from https://app.lunary.ai/settings
|
||||
|
||||
```shell
|
||||
export LUNARY_PUBLIC_KEY="<your-public-key>"
|
||||
```
|
||||
|
@ -1484,6 +1477,7 @@ litellm_settings:
|
|||
```
|
||||
|
||||
#### Step 3: Start the LiteLLM proxy
|
||||
|
||||
```shell
|
||||
litellm --config config.yaml
|
||||
```
|
||||
|
@ -1510,8 +1504,8 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
|
|||
|
||||
## MLflow
|
||||
|
||||
|
||||
#### Step1: Install dependencies
|
||||
|
||||
Install the dependencies.
|
||||
|
||||
```shell
|
||||
|
@ -1531,6 +1525,7 @@ litellm_settings:
|
|||
```
|
||||
|
||||
#### Step 3: Start the LiteLLM proxy
|
||||
|
||||
```shell
|
||||
litellm --config config.yaml
|
||||
```
|
||||
|
@ -1559,8 +1554,6 @@ Run the following command to start MLflow UI and review recorded traces.
|
|||
mlflow ui
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Custom Callback Class [Async]
|
||||
|
||||
Use this when you want to run custom callbacks in `python`
|
||||
|
@ -1571,7 +1564,7 @@ We use `litellm.integrations.custom_logger` for this, **more details about litel
|
|||
|
||||
Define your custom callback class in a python file.
|
||||
|
||||
Here's an example custom logger for tracking `key, user, model, prompt, response, tokens, cost`. We create a file called `custom_callbacks.py` and initialize `proxy_handler_instance`
|
||||
Here's an example custom logger for tracking `key, user, model, prompt, response, tokens, cost`. We create a file called `custom_callbacks.py` and initialize `proxy_handler_instance`
|
||||
|
||||
```python
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
|
@ -1580,16 +1573,16 @@ import litellm
|
|||
# This file includes the custom callbacks for LiteLLM Proxy
|
||||
# Once defined, these can be passed in proxy_config.yaml
|
||||
class MyCustomHandler(CustomLogger):
|
||||
def log_pre_api_call(self, model, messages, kwargs):
|
||||
def log_pre_api_call(self, model, messages, kwargs):
|
||||
print(f"Pre-API Call")
|
||||
|
||||
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
|
||||
|
||||
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"Post-API Call")
|
||||
|
||||
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
|
||||
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
print("On Success")
|
||||
|
||||
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Failure")
|
||||
|
||||
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
|
@ -1607,7 +1600,7 @@ class MyCustomHandler(CustomLogger):
|
|||
# Calculate cost using litellm.completion_cost()
|
||||
cost = litellm.completion_cost(completion_response=response_obj)
|
||||
response = response_obj
|
||||
# tokens used in response
|
||||
# tokens used in response
|
||||
usage = response_obj["usage"]
|
||||
|
||||
print(
|
||||
|
@ -1623,7 +1616,7 @@ class MyCustomHandler(CustomLogger):
|
|||
)
|
||||
return
|
||||
|
||||
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
try:
|
||||
print(f"On Async Failure !")
|
||||
print("\nkwargs", kwargs)
|
||||
|
@ -1643,7 +1636,7 @@ class MyCustomHandler(CustomLogger):
|
|||
# Calculate cost using litellm.completion_cost()
|
||||
cost = litellm.completion_cost(completion_response=response_obj)
|
||||
print("now checking response obj")
|
||||
|
||||
|
||||
print(
|
||||
f"""
|
||||
Model: {model},
|
||||
|
@ -1667,7 +1660,7 @@ proxy_handler_instance = MyCustomHandler()
|
|||
|
||||
#### Step 2 - Pass your custom callback class in `config.yaml`
|
||||
|
||||
We pass the custom callback class defined in **Step1** to the config.yaml.
|
||||
We pass the custom callback class defined in **Step1** to the config.yaml.
|
||||
Set `callbacks` to `python_filename.logger_instance_name`
|
||||
|
||||
In the config below, we pass
|
||||
|
@ -1685,7 +1678,6 @@ model_list:
|
|||
|
||||
litellm_settings:
|
||||
callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [proxy_handler_instance]
|
||||
|
||||
```
|
||||
|
||||
#### Step 3 - Start proxy + test request
|
||||
|
@ -1766,7 +1758,7 @@ class MyCustomHandler(CustomLogger):
|
|||
}
|
||||
```
|
||||
|
||||
#### Logging `model_info` set in config.yaml
|
||||
#### Logging `model_info` set in config.yaml
|
||||
|
||||
Here is how to log the `model_info` set in your proxy `config.yaml`. Information on setting `model_info` on [config.yaml](https://docs.litellm.ai/docs/proxy/configs)
|
||||
|
||||
|
@ -1783,7 +1775,7 @@ class MyCustomHandler(CustomLogger):
|
|||
**Expected Output**
|
||||
|
||||
```json
|
||||
{'mode': 'embedding', 'input_cost_per_token': 0.002}
|
||||
{ "mode": "embedding", "input_cost_per_token": 0.002 }
|
||||
```
|
||||
|
||||
##### Logging responses from proxy
|
||||
|
@ -1863,7 +1855,7 @@ Use this if you:
|
|||
|
||||
#### Step 1. Create your generic logging API endpoint
|
||||
|
||||
Set up a generic API endpoint that can receive data in JSON format. The data will be included within a "data" field.
|
||||
Set up a generic API endpoint that can receive data in JSON format. The data will be included within a "data" field.
|
||||
|
||||
Your server should support the following Request format:
|
||||
|
||||
|
@ -1946,7 +1938,7 @@ litellm_settings:
|
|||
success_callback: ["generic"]
|
||||
```
|
||||
|
||||
Start the LiteLLM Proxy and make a test request to verify the logs reached your callback API
|
||||
Start the LiteLLM Proxy and make a test request to verify the logs reached your callback API
|
||||
|
||||
## Langsmith
|
||||
|
||||
|
@ -1966,14 +1958,13 @@ environment_variables:
|
|||
LANGSMITH_BASE_URL: "https://api.smith.langchain.com" # (Optional - only needed if you have a custom Langsmith instance)
|
||||
```
|
||||
|
||||
|
||||
2. Start Proxy
|
||||
|
||||
```
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
|
@ -1989,10 +1980,10 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}
|
||||
'
|
||||
```
|
||||
|
||||
Expect to see your log on Langfuse
|
||||
<Image img={require('../../img/langsmith_new.png')} />
|
||||
|
||||
|
||||
## Arize AI
|
||||
|
||||
1. Set `success_callback: ["arize"]` on litellm config.yaml
|
||||
|
@ -2009,10 +2000,10 @@ litellm_settings:
|
|||
callbacks: ["arize"]
|
||||
|
||||
environment_variables:
|
||||
ARIZE_SPACE_KEY: "d0*****"
|
||||
ARIZE_API_KEY: "141a****"
|
||||
ARIZE_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize GRPC api endpoint
|
||||
ARIZE_HTTP_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize HTTP api endpoint. Set either this or ARIZE_ENDPOINT
|
||||
ARIZE_SPACE_ID: "d0*****"
|
||||
ARIZE_API_KEY: "141a****"
|
||||
ARIZE_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize GRPC api endpoint
|
||||
ARIZE_HTTP_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize HTTP api endpoint. Set either this or ARIZE_ENDPOINT
|
||||
```
|
||||
|
||||
2. Start Proxy
|
||||
|
@ -2021,7 +2012,7 @@ environment_variables:
|
|||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
|
@ -2037,10 +2028,10 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}
|
||||
'
|
||||
```
|
||||
|
||||
Expect to see your log on Langfuse
|
||||
<Image img={require('../../img/langsmith_new.png')} />
|
||||
|
||||
|
||||
## Langtrace
|
||||
|
||||
1. Set `success_callback: ["langtrace"]` on litellm config.yaml
|
||||
|
@ -2057,7 +2048,7 @@ litellm_settings:
|
|||
callbacks: ["langtrace"]
|
||||
|
||||
environment_variables:
|
||||
LANGTRACE_API_KEY: "141a****"
|
||||
LANGTRACE_API_KEY: "141a****"
|
||||
```
|
||||
|
||||
2. Start Proxy
|
||||
|
@ -2066,7 +2057,7 @@ environment_variables:
|
|||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
|
@ -2104,17 +2095,17 @@ export GALILEO_USERNAME=""
|
|||
export GALILEO_PASSWORD=""
|
||||
```
|
||||
|
||||
#### Quick Start
|
||||
#### Quick Start
|
||||
|
||||
1. Add to Config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- litellm_params:
|
||||
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||
api_key: my-fake-key
|
||||
model: openai/my-fake-model
|
||||
model_name: fake-openai-endpoint
|
||||
- litellm_params:
|
||||
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||
api_key: my-fake-key
|
||||
model: openai/my-fake-model
|
||||
model_name: fake-openai-endpoint
|
||||
|
||||
litellm_settings:
|
||||
success_callback: ["galileo"] # 👈 KEY CHANGE
|
||||
|
@ -2126,7 +2117,7 @@ litellm_settings:
|
|||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
|
@ -2157,17 +2148,17 @@ export OPENMETER_API_ENDPOINT="" # defaults to https://openmeter.cloud
|
|||
export OPENMETER_API_KEY=""
|
||||
```
|
||||
|
||||
##### Quick Start
|
||||
##### Quick Start
|
||||
|
||||
1. Add to Config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- litellm_params:
|
||||
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
|
||||
api_key: my-fake-key
|
||||
model: openai/my-fake-model
|
||||
model_name: fake-openai-endpoint
|
||||
- litellm_params:
|
||||
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
|
||||
api_key: my-fake-key
|
||||
model: openai/my-fake-model
|
||||
model_name: fake-openai-endpoint
|
||||
|
||||
litellm_settings:
|
||||
success_callback: ["openmeter"] # 👈 KEY CHANGE
|
||||
|
@ -2179,7 +2170,7 @@ litellm_settings:
|
|||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
|
@ -2200,9 +2191,9 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
|
||||
## DynamoDB
|
||||
|
||||
We will use the `--config` to set
|
||||
We will use the `--config` to set
|
||||
|
||||
- `litellm.success_callback = ["dynamodb"]`
|
||||
- `litellm.success_callback = ["dynamodb"]`
|
||||
- `litellm.dynamodb_table_name = "your-table-name"`
|
||||
|
||||
This will log all successfull LLM calls to DynamoDB
|
||||
|
@ -2326,7 +2317,7 @@ Your logs should be available on DynamoDB
|
|||
|
||||
## Sentry
|
||||
|
||||
If api calls fail (llm/database) you can log those to Sentry:
|
||||
If api calls fail (llm/database) you can log those to Sentry:
|
||||
|
||||
**Step 1** Install Sentry
|
||||
|
||||
|
@ -2340,7 +2331,7 @@ pip install --upgrade sentry-sdk
|
|||
export SENTRY_DSN="your-sentry-dsn"
|
||||
```
|
||||
|
||||
```yaml
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
|
@ -2348,7 +2339,7 @@ model_list:
|
|||
litellm_settings:
|
||||
# other settings
|
||||
failure_callback: ["sentry"]
|
||||
general_settings:
|
||||
general_settings:
|
||||
database_url: "my-bad-url" # set a fake url to trigger a sentry exception
|
||||
```
|
||||
|
||||
|
@ -2413,7 +2404,6 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}'
|
||||
```
|
||||
|
||||
|
||||
<!-- ## (BETA) Moderation with Azure Content Safety
|
||||
|
||||
Note: This page is for logging callbacks and this is a moderation service. Commenting until we found a better location for this.
|
||||
|
@ -2501,4 +2491,4 @@ litellm_settings:
|
|||
:::info
|
||||
`thresholds` are not required by default, but you can tune the values to your needs.
|
||||
Default values is `4` for all categories
|
||||
::: -->
|
||||
::: -->
|
||||
|
|
|
@ -12,7 +12,7 @@ else:
|
|||
|
||||
|
||||
def set_attributes(span: Span, kwargs, response_obj):
|
||||
from openinference.semconv.trace import (
|
||||
from litellm.integrations._types.open_inference import (
|
||||
MessageAttributes,
|
||||
OpenInferenceSpanKindValues,
|
||||
SpanAttributes,
|
||||
|
|
|
@ -40,11 +40,11 @@ class ArizeLogger:
|
|||
Raises:
|
||||
ValueError: If required environment variables are not set.
|
||||
"""
|
||||
space_key = os.environ.get("ARIZE_SPACE_KEY")
|
||||
space_id = os.environ.get("ARIZE_SPACE_ID")
|
||||
api_key = os.environ.get("ARIZE_API_KEY")
|
||||
|
||||
if not space_key:
|
||||
raise ValueError("ARIZE_SPACE_KEY not found in environment variables")
|
||||
if not space_id:
|
||||
raise ValueError("ARIZE_SPACE_ID not found in environment variables")
|
||||
if not api_key:
|
||||
raise ValueError("ARIZE_API_KEY not found in environment variables")
|
||||
|
||||
|
@ -65,7 +65,7 @@ class ArizeLogger:
|
|||
endpoint = "https://otlp.arize.com/v1"
|
||||
|
||||
return ArizeConfig(
|
||||
space_key=space_key,
|
||||
space_id=space_id,
|
||||
api_key=api_key,
|
||||
protocol=protocol,
|
||||
endpoint=endpoint,
|
||||
|
|
|
@ -2654,7 +2654,7 @@ def _init_custom_logger_compatible_class( # noqa: PLR0915
|
|||
)
|
||||
|
||||
os.environ["OTEL_EXPORTER_OTLP_TRACES_HEADERS"] = (
|
||||
f"space_key={arize_config.space_key},api_key={arize_config.api_key}"
|
||||
f"space_id={arize_config.space_id},api_key={arize_config.api_key}"
|
||||
)
|
||||
for callback in _in_memory_loggers:
|
||||
if (
|
||||
|
@ -2899,8 +2899,8 @@ def get_custom_logger_compatible_class( # noqa: PLR0915
|
|||
elif logging_integration == "arize":
|
||||
from litellm.integrations.opentelemetry import OpenTelemetry
|
||||
|
||||
if "ARIZE_SPACE_KEY" not in os.environ:
|
||||
raise ValueError("ARIZE_SPACE_KEY not found in environment variables")
|
||||
if "ARIZE_SPACE_ID" not in os.environ:
|
||||
raise ValueError("ARIZE_SPACE_ID not found in environment variables")
|
||||
if "ARIZE_API_KEY" not in os.environ:
|
||||
raise ValueError("ARIZE_API_KEY not found in environment variables")
|
||||
for callback in _in_memory_loggers:
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import TYPE_CHECKING, Literal, Any
|
||||
from typing import TYPE_CHECKING, Literal, Any, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
@ -8,7 +8,7 @@ else:
|
|||
Protocol = Any
|
||||
|
||||
class ArizeConfig(BaseModel):
|
||||
space_key: str
|
||||
api_key: str
|
||||
space_id: str
|
||||
api_key: str
|
||||
protocol: Protocol
|
||||
endpoint: str
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
import asyncio
|
||||
import logging
|
||||
|
||||
from litellm import Choices
|
||||
import pytest
|
||||
from dotenv import load_dotenv
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger, verbose_proxy_logger
|
||||
from litellm.integrations._types.open_inference import SpanAttributes
|
||||
from litellm.integrations.arize.arize import ArizeConfig, ArizeLogger
|
||||
|
||||
load_dotenv()
|
||||
|
@ -32,7 +34,7 @@ async def test_async_otel_callback():
|
|||
|
||||
@pytest.fixture
|
||||
def mock_env_vars(monkeypatch):
|
||||
monkeypatch.setenv("ARIZE_SPACE_KEY", "test_space_key")
|
||||
monkeypatch.setenv("ARIZE_SPACE_ID", "test_space_id")
|
||||
monkeypatch.setenv("ARIZE_API_KEY", "test_api_key")
|
||||
|
||||
|
||||
|
@ -42,7 +44,7 @@ def test_get_arize_config(mock_env_vars):
|
|||
"""
|
||||
config = ArizeLogger.get_arize_config()
|
||||
assert isinstance(config, ArizeConfig)
|
||||
assert config.space_key == "test_space_key"
|
||||
assert config.space_id == "test_space_id"
|
||||
assert config.api_key == "test_api_key"
|
||||
assert config.endpoint == "https://otlp.arize.com/v1"
|
||||
assert config.protocol == "otlp_grpc"
|
||||
|
@ -58,3 +60,41 @@ def test_get_arize_config_with_endpoints(mock_env_vars, monkeypatch):
|
|||
config = ArizeLogger.get_arize_config()
|
||||
assert config.endpoint == "grpc://test.endpoint"
|
||||
assert config.protocol == "otlp_grpc"
|
||||
|
||||
|
||||
def test_arize_set_attributes():
|
||||
"""
|
||||
Test setting attributes for Arize
|
||||
"""
|
||||
from unittest.mock import MagicMock
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
span = MagicMock()
|
||||
kwargs = {
|
||||
"role": "user",
|
||||
"content": "simple arize test",
|
||||
"model": "gpt-4o",
|
||||
"messages": [{"role": "user", "content": "basic arize test"}],
|
||||
"litellm_params": {"metadata": {"key": "value"}},
|
||||
"standard_logging_object": {"model_parameters": {"user": "test_user"}}
|
||||
}
|
||||
response_obj = ModelResponse(usage={"total_tokens": 100, "completion_tokens": 60, "prompt_tokens": 40},
|
||||
choices=[Choices(message={"role": "assistant", "content": "response content"})])
|
||||
|
||||
ArizeLogger.set_arize_attributes(span, kwargs, response_obj)
|
||||
|
||||
assert span.set_attribute.call_count == 14
|
||||
span.set_attribute.assert_any_call(SpanAttributes.METADATA, str({"key": "value"}))
|
||||
span.set_attribute.assert_any_call(SpanAttributes.LLM_MODEL_NAME, "gpt-4o")
|
||||
span.set_attribute.assert_any_call(SpanAttributes.OPENINFERENCE_SPAN_KIND, "LLM")
|
||||
span.set_attribute.assert_any_call(SpanAttributes.INPUT_VALUE, "basic arize test")
|
||||
span.set_attribute.assert_any_call("llm.input_messages.0.message.role", "user")
|
||||
span.set_attribute.assert_any_call("llm.input_messages.0.message.content", "basic arize test")
|
||||
span.set_attribute.assert_any_call(SpanAttributes.LLM_INVOCATION_PARAMETERS, '{"user": "test_user"}')
|
||||
span.set_attribute.assert_any_call(SpanAttributes.USER_ID, "test_user")
|
||||
span.set_attribute.assert_any_call(SpanAttributes.OUTPUT_VALUE, "response content")
|
||||
span.set_attribute.assert_any_call("llm.output_messages.0.message.role", "assistant")
|
||||
span.set_attribute.assert_any_call("llm.output_messages.0.message.content", "response content")
|
||||
span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_TOTAL, 100)
|
||||
span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_COMPLETION, 60)
|
||||
span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_PROMPT, 40)
|
0
tests/logging_callback_tests/test_arize_logging.py
Normal file
0
tests/logging_callback_tests/test_arize_logging.py
Normal file
|
@ -89,7 +89,7 @@ expected_env_vars = {
|
|||
"OPIK_API_KEY": "opik_api_key",
|
||||
"LANGTRACE_API_KEY": "langtrace_api_key",
|
||||
"LOGFIRE_TOKEN": "logfire_token",
|
||||
"ARIZE_SPACE_KEY": "arize_space_key",
|
||||
"ARIZE_SPACE_ID": "arize_space_id",
|
||||
"ARIZE_API_KEY": "arize_api_key",
|
||||
"PHOENIX_API_KEY": "phoenix_api_key",
|
||||
"ARGILLA_API_KEY": "argilla_api_key",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue