mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
feat(main.py): add support for maritalk api
This commit is contained in:
parent
d61e4cab19
commit
0ed3917b09
6 changed files with 274 additions and 7 deletions
|
@ -23,6 +23,7 @@ azure_key: Optional[str] = None
|
|||
anthropic_key: Optional[str] = None
|
||||
replicate_key: Optional[str] = None
|
||||
cohere_key: Optional[str] = None
|
||||
maritalk_key: Optional[str] = None
|
||||
ai21_key: Optional[str] = None
|
||||
openrouter_key: Optional[str] = None
|
||||
huggingface_key: Optional[str] = None
|
||||
|
@ -218,6 +219,10 @@ ollama_models = [
|
|||
"llama2"
|
||||
]
|
||||
|
||||
maritalk_models = [
|
||||
"maritalk"
|
||||
]
|
||||
|
||||
model_list = (
|
||||
open_ai_chat_completion_models
|
||||
+ open_ai_text_completion_models
|
||||
|
@ -237,6 +242,7 @@ model_list = (
|
|||
+ bedrock_models
|
||||
+ deepinfra_models
|
||||
+ perplexity_models
|
||||
+ maritalk_models
|
||||
)
|
||||
|
||||
provider_list: List = [
|
||||
|
@ -263,6 +269,7 @@ provider_list: List = [
|
|||
"deepinfra",
|
||||
"perplexity",
|
||||
"anyscale",
|
||||
"maritalk",
|
||||
"custom", # custom apis
|
||||
]
|
||||
|
||||
|
@ -282,6 +289,7 @@ models_by_provider: dict = {
|
|||
"ollama": ollama_models,
|
||||
"deepinfra": deepinfra_models,
|
||||
"perplexity": perplexity_models,
|
||||
"maritalk": maritalk_models
|
||||
}
|
||||
|
||||
# mapping for those models which have larger equivalents
|
||||
|
@ -347,6 +355,7 @@ from .llms.petals import PetalsConfig
|
|||
from .llms.vertex_ai import VertexAIConfig
|
||||
from .llms.sagemaker import SagemakerConfig
|
||||
from .llms.ollama import OllamaConfig
|
||||
from .llms.maritalk import MaritTalkConfig
|
||||
from .llms.bedrock import AmazonTitanConfig, AmazonAI21Config, AmazonAnthropicConfig, AmazonCohereConfig
|
||||
from .llms.openai import OpenAIConfig, OpenAITextCompletionConfig, AzureOpenAIConfig
|
||||
from .main import * # type: ignore
|
||||
|
|
161
litellm/llms/maritalk.py
Normal file
161
litellm/llms/maritalk.py
Normal file
|
@ -0,0 +1,161 @@
|
|||
import os, types
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests
|
||||
import time, traceback
|
||||
from typing import Callable, Optional, List
|
||||
from litellm.utils import ModelResponse, Choices, Message
|
||||
import litellm
|
||||
|
||||
class MaritalkError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
class MaritTalkConfig():
|
||||
"""
|
||||
The class `MaritTalkConfig` provides configuration for the MaritTalk's API interface. Here are the parameters:
|
||||
|
||||
- `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default is 1.
|
||||
|
||||
- `model` (string): The model used for conversation. Default is 'maritalk'.
|
||||
|
||||
- `do_sample` (boolean): If set to True, the API will generate a response using sampling. Default is True.
|
||||
|
||||
- `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.7.
|
||||
|
||||
- `top_p` (number): Selection threshold for token inclusion based on cumulative probability. Default is 0.95.
|
||||
|
||||
- `repetition_penalty` (number): Penalty for repetition in the generated conversation. Default is 1.
|
||||
|
||||
- `stopping_tokens` (list of string): List of tokens where the conversation can be stopped/stopped.
|
||||
"""
|
||||
max_tokens: Optional[int] = None
|
||||
model: Optional[str] = None
|
||||
do_sample: Optional[bool] = None
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
repetition_penalty: Optional[float] = None
|
||||
stopping_tokens: Optional[List[str]] = None
|
||||
|
||||
def __init__(self,
|
||||
max_tokens: Optional[int]=None,
|
||||
model: Optional[str] = None,
|
||||
do_sample: Optional[bool] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
repetition_penalty: Optional[float] = None,
|
||||
stopping_tokens: Optional[List[str]] = None) -> None:
|
||||
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != 'self' and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {k: v for k, v in cls.__dict__.items()
|
||||
if not k.startswith('__')
|
||||
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
||||
and v is not None}
|
||||
|
||||
def validate_environment(api_key):
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Key {api_key}"
|
||||
return headers
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
headers = validate_environment(api_key)
|
||||
completion_url = api_base
|
||||
model = model
|
||||
|
||||
## Load Config
|
||||
config=litellm.MaritTalkConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if k not in optional_params: # completion(top_k=3) > maritalk_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
data = {
|
||||
"messages": messages,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(
|
||||
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
if "error" in completion_response:
|
||||
raise MaritalkError(
|
||||
message=completion_response["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
if len(completion_response["answer"]) > 0:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response["answer"]
|
||||
except Exception as e:
|
||||
raise MaritalkError(message=response.text, status_code=response.status_code)
|
||||
|
||||
## CALCULATING USAGE
|
||||
prompt = "".join(m["content"] for m in messages)
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
return model_response
|
||||
|
||||
def embedding(
|
||||
model: str,
|
||||
input: list,
|
||||
api_key: Optional[str] = None,
|
||||
logging_obj=None,
|
||||
model_response=None,
|
||||
encoding=None,
|
||||
):
|
||||
pass
|
|
@ -47,7 +47,8 @@ from .llms import (
|
|||
petals,
|
||||
oobabooga,
|
||||
palm,
|
||||
vertex_ai)
|
||||
vertex_ai,
|
||||
maritalk)
|
||||
from .llms.openai import OpenAIChatCompletion
|
||||
from .llms.prompt_templates.factory import prompt_factory, custom_prompt, function_call_prompt
|
||||
import tiktoken
|
||||
|
@ -703,7 +704,7 @@ def completion(
|
|||
response = CustomStreamWrapper(model_response, model, custom_llm_provider="aleph_alpha", logging_obj=logging)
|
||||
return response
|
||||
response = model_response
|
||||
elif model in litellm.cohere_models:
|
||||
elif custom_llm_provider == "cohere":
|
||||
cohere_key = (
|
||||
api_key
|
||||
or litellm.cohere_key
|
||||
|
@ -738,6 +739,40 @@ def completion(
|
|||
response = CustomStreamWrapper(model_response, model, custom_llm_provider="cohere", logging_obj=logging)
|
||||
return response
|
||||
response = model_response
|
||||
elif custom_llm_provider == "maritalk":
|
||||
maritalk_key = (
|
||||
api_key
|
||||
or litellm.maritalk_key
|
||||
or get_secret("MARITALK_API_KEY")
|
||||
or litellm.api_key
|
||||
)
|
||||
|
||||
api_base = (
|
||||
api_base
|
||||
or litellm.api_base
|
||||
or get_secret("MARITALK_API_BASE")
|
||||
or "https://chat.maritaca.ai/api/chat/inference"
|
||||
)
|
||||
|
||||
model_response = maritalk.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
api_key=maritalk_key,
|
||||
logging_obj=logging
|
||||
)
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(model_response, model, custom_llm_provider="maritalk", logging_obj=logging)
|
||||
return response
|
||||
response = model_response
|
||||
elif custom_llm_provider == "deepinfra": # for now this NEEDS to be above Hugging Face otherwise all calls to meta-llama/Llama-2-70b-chat-hf go to hf, we need this to go to deep infra if user sets provider to deep infra
|
||||
# this can be called with the openai python package
|
||||
api_key = (
|
||||
|
|
|
@ -56,7 +56,7 @@ def test_completion_claude():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
test_completion_claude()
|
||||
# test_completion_claude()
|
||||
|
||||
# def test_completion_oobabooga():
|
||||
# try:
|
||||
|
@ -1273,6 +1273,14 @@ def test_completion_palm():
|
|||
# pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_maritalk():
|
||||
messages = [{"role": "user", "content": "Hey"}]
|
||||
try:
|
||||
response = completion("maritalk", messages=messages)
|
||||
print(f"response: {response}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
# test_maritalk()
|
||||
|
||||
def test_completion_together_ai_stream():
|
||||
user_message = "Write 1pg about YC & litellm"
|
||||
|
|
|
@ -724,6 +724,23 @@ def test_completion_replicate_stream_bad_key():
|
|||
|
||||
# test_completion_sagemaker_stream()
|
||||
|
||||
|
||||
def test_maritalk_streaming():
|
||||
messages = [{"role": "user", "content": "Hey"}]
|
||||
try:
|
||||
response = completion("maritalk", messages=messages, stream=True)
|
||||
complete_response = ""
|
||||
start_time = time.time()
|
||||
for idx, chunk in enumerate(response):
|
||||
chunk, finished = streaming_format_tests(idx, chunk)
|
||||
complete_response += chunk
|
||||
if finished:
|
||||
break
|
||||
if complete_response.strip() == "":
|
||||
raise Exception("Empty response received")
|
||||
except:
|
||||
pytest.fail(f"error occurred: {traceback.format_exc()}")
|
||||
test_maritalk_streaming()
|
||||
# test on openai completion call
|
||||
def test_openai_text_completion_call():
|
||||
try:
|
||||
|
|
|
@ -1285,8 +1285,25 @@ def get_optional_params( # use the openai defaults
|
|||
optional_params["presence_penalty"] = presence_penalty
|
||||
if stop:
|
||||
optional_params["stop_sequences"] = stop
|
||||
elif custom_llm_provider == "perplexity":
|
||||
optional_params[""]
|
||||
elif custom_llm_provider == "maritalk":
|
||||
## check if unsupported param passed in
|
||||
supported_params = ["stream", "temperature", "max_tokens", "top_p", "presence_penalty", "stop"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
# handle cohere params
|
||||
if stream:
|
||||
optional_params["stream"] = stream
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if max_tokens:
|
||||
optional_params["max_tokens"] = max_tokens
|
||||
if logit_bias != {}:
|
||||
optional_params["logit_bias"] = logit_bias
|
||||
if top_p:
|
||||
optional_params["p"] = top_p
|
||||
if presence_penalty:
|
||||
optional_params["repetition_penalty"] = presence_penalty
|
||||
if stop:
|
||||
optional_params["stopping_tokens"] = stop
|
||||
elif custom_llm_provider == "replicate":
|
||||
## check if unsupported param passed in
|
||||
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "seed"]
|
||||
|
@ -1585,7 +1602,7 @@ def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None, api_
|
|||
return model, custom_llm_provider, dynamic_api_key, api_base
|
||||
|
||||
# check if llm provider part of model name
|
||||
if model.split("/",1)[0] in litellm.provider_list:
|
||||
if model.split("/",1)[0] in litellm.provider_list and model.split("/",1)[0] not in litellm.model_list:
|
||||
custom_llm_provider = model.split("/", 1)[0]
|
||||
model = model.split("/", 1)[1]
|
||||
if custom_llm_provider == "perplexity":
|
||||
|
@ -1631,6 +1648,9 @@ def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None, api_
|
|||
## openrouter
|
||||
elif model in litellm.openrouter_models:
|
||||
custom_llm_provider = "openrouter"
|
||||
## openrouter
|
||||
elif model in litellm.maritalk_models:
|
||||
custom_llm_provider = "maritalk"
|
||||
## vertex - text + chat models
|
||||
elif model in litellm.vertex_chat_models or model in litellm.vertex_text_models:
|
||||
custom_llm_provider = "vertex_ai"
|
||||
|
@ -3328,7 +3348,7 @@ def exception_type(
|
|||
elif custom_llm_provider == "ollama":
|
||||
if "no attribute 'async_get_ollama_response_stream" in error_str:
|
||||
raise ImportError("Import error - trying to use async for ollama. import async_generator failed. Try 'pip install async_generator'")
|
||||
elif custom_llm_provider == "custom_openai":
|
||||
elif custom_llm_provider == "custom_openai" or custom_llm_provider == "maritalk":
|
||||
if hasattr(original_exception, "status_code"):
|
||||
exception_mapping_worked = True
|
||||
if original_exception.status_code == 401:
|
||||
|
@ -3590,6 +3610,17 @@ class CustomStreamWrapper:
|
|||
except:
|
||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_maritalk_chunk(self, chunk): # fake streaming
|
||||
chunk = chunk.decode("utf-8")
|
||||
data_json = json.loads(chunk)
|
||||
try:
|
||||
text = data_json["answer"]
|
||||
is_finished = True
|
||||
finish_reason = "stop"
|
||||
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
|
||||
except:
|
||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_nlp_cloud_chunk(self, chunk):
|
||||
chunk = chunk.decode("utf-8")
|
||||
data_json = json.loads(chunk)
|
||||
|
@ -3776,6 +3807,12 @@ class CustomStreamWrapper:
|
|||
completion_obj["content"] = response_obj["text"]
|
||||
if response_obj["is_finished"]:
|
||||
model_response.choices[0].finish_reason = response_obj["finish_reason"]
|
||||
elif self.custom_llm_provider and self.custom_llm_provider == "maritalk":
|
||||
chunk = next(self.completion_stream)
|
||||
response_obj = self.handle_maritalk_chunk(chunk)
|
||||
completion_obj["content"] = response_obj["text"]
|
||||
if response_obj["is_finished"]:
|
||||
model_response.choices[0].finish_reason = response_obj["finish_reason"]
|
||||
elif self.custom_llm_provider and self.custom_llm_provider == "vllm":
|
||||
chunk = next(self.completion_stream)
|
||||
completion_obj["content"] = chunk[0].outputs[0].text
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue