(fix) completion: max_retries using OpenAI client

This commit is contained in:
ishaan-jaff 2023-11-20 16:53:18 -08:00
parent 2bd934e56c
commit 11ec2710c6
4 changed files with 19 additions and 16 deletions

View file

@ -136,7 +136,7 @@ class AzureChatCompletion(BaseLLM):
elif "stream" in optional_params and optional_params["stream"] == True:
return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, model=model, api_key=api_key, api_version=api_version, azure_ad_token=azure_ad_token, timeout=timeout)
else:
azure_client = AzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=api_base, azure_deployment=model, azure_ad_token=azure_ad_token, http_client=litellm.client_session, timeout=timeout)
azure_client = AzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=api_base, azure_deployment=model, azure_ad_token=azure_ad_token, http_client=litellm.client_session, timeout=timeout, max_retries=data.pop("max_retries", 2))
response = azure_client.chat.completions.create(**data) # type: ignore
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
except AzureOpenAIError as e:
@ -156,7 +156,7 @@ class AzureChatCompletion(BaseLLM):
azure_ad_token: Optional[str]=None, ):
response = None
try:
azure_client = AsyncAzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=api_base, azure_deployment=model, azure_ad_token=azure_ad_token, http_client=litellm.aclient_session, timeout=timeout)
azure_client = AsyncAzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=api_base, azure_deployment=model, azure_ad_token=azure_ad_token, http_client=litellm.aclient_session, timeout=timeout, max_retries=data.pop("max_retries", 2))
response = await azure_client.chat.completions.create(**data)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
except Exception as e:
@ -177,7 +177,7 @@ class AzureChatCompletion(BaseLLM):
timeout: Any,
azure_ad_token: Optional[str]=None,
):
azure_client = AzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=api_base, azure_deployment=model, azure_ad_token=azure_ad_token, http_client=litellm.client_session, timeout=timeout)
azure_client = AzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=api_base, azure_deployment=model, azure_ad_token=azure_ad_token, http_client=litellm.client_session, timeout=timeout, max_retries=data.pop("max_retries", 2))
response = azure_client.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="azure",logging_obj=logging_obj)
for transformed_chunk in streamwrapper:
@ -192,7 +192,7 @@ class AzureChatCompletion(BaseLLM):
model: str,
timeout: Any,
azure_ad_token: Optional[str]=None):
azure_client = AsyncAzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=api_base, azure_deployment=model, azure_ad_token=azure_ad_token, http_client=litellm.aclient_session, timeout=timeout)
azure_client = AsyncAzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=api_base, azure_deployment=model, azure_ad_token=azure_ad_token, http_client=litellm.aclient_session, timeout=timeout, max_retries=data.pop("max_retries", 2))
response = await azure_client.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="azure",logging_obj=logging_obj)
async for transformed_chunk in streamwrapper:
@ -213,12 +213,12 @@ class AzureChatCompletion(BaseLLM):
if self._client_session is None:
self._client_session = self.create_client_session()
try:
azure_client = AzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=api_base, azure_deployment=model, azure_ad_token=azure_ad_token, http_client=litellm.client_session)
data = {
"model": model,
"input": input,
**optional_params
}
azure_client = AzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=api_base, azure_deployment=model, azure_ad_token=azure_ad_token, http_client=litellm.client_session, max_retries=data.pop("max_retries", 2))
## LOGGING
logging_obj.pre_call(

View file

@ -207,7 +207,7 @@ class OpenAIChatCompletion(BaseLLM):
elif optional_params.get("stream", False):
return self.streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout)
else:
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout)
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=data.pop("max_retries", 2))
response = openai_client.chat.completions.create(**data) # type: ignore
logging_obj.post_call(
input=None,
@ -249,7 +249,7 @@ class OpenAIChatCompletion(BaseLLM):
api_base: Optional[str]=None):
response = None
try:
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout)
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=data.pop("max_retries", 2))
response = await openai_aclient.chat.completions.create(**data)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
except Exception as e:
@ -269,7 +269,7 @@ class OpenAIChatCompletion(BaseLLM):
api_key: Optional[str]=None,
api_base: Optional[str]=None
):
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout)
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=data.pop("max_retries", 2))
response = openai_client.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
for transformed_chunk in streamwrapper:
@ -284,7 +284,7 @@ class OpenAIChatCompletion(BaseLLM):
api_base: Optional[str]=None):
response = None
try:
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout)
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=data.pop("max_retries", 2))
response = await openai_aclient.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
async for transformed_chunk in streamwrapper:
@ -309,7 +309,7 @@ class OpenAIChatCompletion(BaseLLM):
super().embedding()
exception_mapping_worked = False
try:
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session)
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, max_retries=data.pop("max_retries", 2))
model = model
data = {
"model": model,

View file

@ -331,8 +331,8 @@ def completion(
eos_token = kwargs.get("eos_token", None)
acompletion = kwargs.get("acompletion", False)
######## end of unpacking kwargs ###########
openai_params = ["functions", "function_call", "temperature", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "request_timeout", "api_base", "api_version", "api_key", "deployment_id", "organization", "base_url", "default_headers", "timeout", "response_format", "seed", "tools", "tool_choice"]
litellm_params = ["metadata", "acompletion", "caching", "return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "fallbacks", "azure", "headers", "model_list", "num_retries", "context_window_fallback_dict", "roles", "final_prompt_value", "bos_token", "eos_token", "request_timeout", "complete_response", "self", "max_retries"]
openai_params = ["functions", "function_call", "temperature", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "request_timeout", "api_base", "api_version", "api_key", "deployment_id", "organization", "base_url", "default_headers", "timeout", "response_format", "seed", "tools", "tool_choice", "max_retries"]
litellm_params = ["metadata", "acompletion", "caching", "return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "fallbacks", "azure", "headers", "model_list", "num_retries", "context_window_fallback_dict", "roles", "final_prompt_value", "bos_token", "eos_token", "request_timeout", "complete_response", "self"]
default_params = openai_params + litellm_params
non_default_params = {k: v for k,v in kwargs.items() if k not in default_params} # model-specific params - pass them straight to the model/provider
@ -342,9 +342,9 @@ def completion(
timeout = 600 # set timeout for 10 minutes by default
timeout = float(timeout)
try:
if base_url:
if base_url is not None:
api_base = base_url
if max_retries:
if max_retries is not None: # openai allows openai.OpenAI(max_retries=3)
num_retries = max_retries
logging = litellm_logging_obj
fallbacks = (
@ -410,6 +410,7 @@ def completion(
seed=seed,
tools=tools,
tool_choice=tool_choice,
max_retries=max_retries,
**non_default_params
)

View file

@ -1759,6 +1759,7 @@ def get_optional_params( # use the openai defaults
seed=None,
tools=None,
tool_choice=None,
max_retries=None,
**kwargs
):
# retrieve all parameters passed to the function
@ -1784,7 +1785,8 @@ def get_optional_params( # use the openai defaults
"response_format": None,
"seed": None,
"tools": None,
"tool_choice": None
"tool_choice": None,
"max_retries": None,
}
# filter out those parameters that were passed with non-default values
non_default_params = {k: v for k, v in passed_params.items() if (k != "model" and k != "custom_llm_provider" and k in default_params and v != default_params[k])}
@ -2178,7 +2180,7 @@ def get_optional_params( # use the openai defaults
temperature = 0.0001 # close to 0
optional_params["temperature"] = temperature
else: # assume passing in params for openai/azure openai
supported_params = ["functions", "function_call", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "response_format", "seed", "tools", "tool_choice"]
supported_params = ["functions", "function_call", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "response_format", "seed", "tools", "tool_choice", "max_retries"]
_check_valid_arg(supported_params=supported_params)
optional_params = non_default_params
# if user passed in non-default kwargs for specific providers/models, pass them along