Merge pull request #655 from coconut49/main

Create GitHub Action to automatically build docker images
This commit is contained in:
Krish Dholakia 2023-10-19 21:49:18 -07:00 committed by GitHub
commit 123c0f41f8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 209 additions and 93 deletions

46
.github/workflows/docker.yml vendored Normal file
View file

@ -0,0 +1,46 @@
name: Build Docker Images
on:
workflow_dispatch:
inputs:
tag:
description: "The tag version you want to build"
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to GitHub Container Registry
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: ghcr.io/${{ github.repository }}
- name: Get tag to build
id: tag
run: |
echo "latest=ghcr.io/${{ github.repository }}:latest" >> $GITHUB_OUTPUT
if [[ -z "${{ github.event.inputs.tag }}" ]]; then
echo "versioned=ghcr.io/${{ github.repository }}:${{ github.ref_name }}" >> $GITHUB_OUTPUT
else
echo "versioned=ghcr.io/${{ github.repository }}:${{ github.event.inputs.tag }}" >> $GITHUB_OUTPUT
fi
- name: Build and release Docker images
uses: docker/build-push-action@v5
with:
context: .
platforms: linux/amd64,linux/arm64
tags: |
${{ steps.tag.outputs.latest }}
${{ steps.tag.outputs.versioned }}
labels: ${{ steps.meta.outputs.labels }}
push: true

View file

@ -1,13 +1,10 @@
FROM python:3.10
ENV LITELLM_CONFIG_PATH="/litellm.secrets.toml"
COPY . /app
WORKDIR /app
RUN mkdir -p /root/.config/litellm/ && cp /app/secrets_template.toml /root/.config/litellm/litellm.secrets.toml
RUN pip install -r requirements.txt
WORKDIR /app/litellm/proxy
EXPOSE 8000
ENTRYPOINT [ "python3", "proxy_cli.py" ]
# TODO - Set up a GitHub Action to automatically create the Docker image,
# and then we can quickly deploy the litellm proxy in the following way
# `docker run -p 8000:8000 -v ./secrets_template.toml:/root/.config/litellm/litellm.secrets.toml ghcr.io/BerriAI/litellm:v0.8.4`
ENTRYPOINT [ "python3", "proxy_cli.py" ]

View file

@ -9,7 +9,7 @@ import operator
config_filename = "litellm.secrets.toml"
# Using appdirs to determine user-specific config path
config_dir = appdirs.user_config_dir("litellm")
user_config_path = os.path.join(config_dir, config_filename)
user_config_path = os.getenv("LITELLM_CONFIG_PATH", os.path.join(config_dir, config_filename))
load_dotenv()
from importlib import resources

View file

@ -18,7 +18,20 @@ except ImportError:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "uvicorn", "fastapi", "tomli", "appdirs", "tomli-w", "backoff"])
subprocess.check_call(
[
sys.executable,
"-m",
"pip",
"install",
"uvicorn",
"fastapi",
"tomli",
"appdirs",
"tomli-w",
"backoff",
]
)
import uvicorn
import fastapi
import tomli as tomllib
@ -26,9 +39,9 @@ except ImportError:
import tomli_w
try:
from .llm import litellm_completion
from .llm import litellm_completion
except ImportError as e:
from llm import litellm_completion # type: ignore
from llm import litellm_completion # type: ignore
import random
@ -51,14 +64,17 @@ def generate_feedback_box():
message = random.choice(list_of_messages)
print()
print('\033[1;37m' + '#' + '-' * box_width + '#\033[0m')
print('\033[1;37m' + '#' + ' ' * box_width + '#\033[0m')
print('\033[1;37m' + '# {:^59} #\033[0m'.format(message))
print('\033[1;37m' + '# {:^59} #\033[0m'.format('https://github.com/BerriAI/litellm/issues/new'))
print('\033[1;37m' + '#' + ' ' * box_width + '#\033[0m')
print('\033[1;37m' + '#' + '-' * box_width + '#\033[0m')
print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m")
print("\033[1;37m" + "#" + " " * box_width + "#\033[0m")
print("\033[1;37m" + "# {:^59} #\033[0m".format(message))
print(
"\033[1;37m"
+ "# {:^59} #\033[0m".format("https://github.com/BerriAI/litellm/issues/new")
)
print("\033[1;37m" + "#" + " " * box_width + "#\033[0m")
print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m")
print()
print(' Thank you for using LiteLLM! - Krrish & Ishaan')
print(" Thank you for using LiteLLM! - Krrish & Ishaan")
print()
print()
@ -66,7 +82,9 @@ def generate_feedback_box():
generate_feedback_box()
print()
print("\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m")
print(
"\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m"
)
print()
print("\033[1;34mDocs: https://docs.litellm.ai/docs/proxy_server\033[0m")
print()
@ -105,8 +123,10 @@ model_router = litellm.Router()
config_filename = "litellm.secrets.toml"
config_dir = os.getcwd()
config_dir = appdirs.user_config_dir("litellm")
user_config_path = os.path.join(config_dir, config_filename)
log_file = 'api_log.json'
user_config_path = os.getenv(
"LITELLM_CONFIG_PATH", os.path.join(config_dir, config_filename)
)
log_file = "api_log.json"
#### HELPER FUNCTIONS ####
@ -124,12 +144,13 @@ def find_avatar_url(role):
def usage_telemetry(
feature: str): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
feature: str,
): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
if user_telemetry:
data = {
"feature": feature # "local_proxy_server"
}
threading.Thread(target=litellm.utils.litellm_telemetry, args=(data,), daemon=True).start()
data = {"feature": feature} # "local_proxy_server"
threading.Thread(
target=litellm.utils.litellm_telemetry, args=(data,), daemon=True
).start()
def add_keys_to_config(key, value):
@ -142,11 +163,11 @@ def add_keys_to_config(key, value):
# File doesn't exist, create empty config
config = {}
# Add new key
config.setdefault('keys', {})[key] = value
# Add new key
config.setdefault("keys", {})[key] = value
# Write config to file
with open(user_config_path, 'wb') as f:
# Write config to file
with open(user_config_path, "wb") as f:
tomli_w.dump(config, f)
@ -160,15 +181,15 @@ def save_params_to_config(data: dict):
# File doesn't exist, create empty config
config = {}
config.setdefault('general', {})
config.setdefault("general", {})
## general config
## general config
general_settings = data["general"]
for key, value in general_settings.items():
config["general"][key] = value
## model-specific config
## model-specific config
config.setdefault("model", {})
config["model"].setdefault(user_model, {})
@ -178,13 +199,13 @@ def save_params_to_config(data: dict):
for key, value in user_model_config.items():
config["model"][model_key][key] = value
# Write config to file
with open(user_config_path, 'wb') as f:
# Write config to file
with open(user_config_path, "wb") as f:
tomli_w.dump(config, f)
def load_config():
try:
try:
global user_config, user_api_base, user_max_tokens, user_temperature, user_model, local_logging
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
with open(user_config_path, "rb") as f:
@ -193,16 +214,23 @@ def load_config():
## load keys
if "keys" in user_config:
for key in user_config["keys"]:
os.environ[key] = user_config["keys"][key] # litellm can read keys from the environment
os.environ[key] = user_config["keys"][
key
] # litellm can read keys from the environment
## settings
if "general" in user_config:
litellm.add_function_to_prompt = user_config["general"].get("add_function_to_prompt",
True) # by default add function to prompt if unsupported by provider
litellm.drop_params = user_config["general"].get("drop_params",
True) # by default drop params if unsupported by provider
litellm.model_fallbacks = user_config["general"].get("fallbacks",
None) # fallback models in case initial completion call fails
default_model = user_config["general"].get("default_model", None) # route all requests to this model.
litellm.add_function_to_prompt = user_config["general"].get(
"add_function_to_prompt", True
) # by default add function to prompt if unsupported by provider
litellm.drop_params = user_config["general"].get(
"drop_params", True
) # by default drop params if unsupported by provider
litellm.model_fallbacks = user_config["general"].get(
"fallbacks", None
) # fallback models in case initial completion call fails
default_model = user_config["general"].get(
"default_model", None
) # route all requests to this model.
local_logging = user_config["general"].get("local_logging", True)
@ -215,10 +243,10 @@ def load_config():
if user_model in user_config["model"]:
model_config = user_config["model"][user_model]
model_list = []
for model in user_config["model"]:
for model in user_config["model"]:
if "model_list" in user_config["model"][model]:
model_list.extend(user_config["model"][model]["model_list"])
if len(model_list) > 0:
if len(model_list) > 0:
model_router.set_model_list(model_list=model_list)
print_verbose(f"user_config: {user_config}")
@ -234,32 +262,63 @@ def load_config():
## custom prompt template
if "prompt_template" in model_config:
model_prompt_template = model_config["prompt_template"]
if len(model_prompt_template.keys()) > 0: # if user has initialized this at all
if (
len(model_prompt_template.keys()) > 0
): # if user has initialized this at all
litellm.register_prompt_template(
model=user_model,
initial_prompt_value=model_prompt_template.get("MODEL_PRE_PROMPT", ""),
initial_prompt_value=model_prompt_template.get(
"MODEL_PRE_PROMPT", ""
),
roles={
"system": {
"pre_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
"post_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
"pre_message": model_prompt_template.get(
"MODEL_SYSTEM_MESSAGE_START_TOKEN", ""
),
"post_message": model_prompt_template.get(
"MODEL_SYSTEM_MESSAGE_END_TOKEN", ""
),
},
"user": {
"pre_message": model_prompt_template.get("MODEL_USER_MESSAGE_START_TOKEN", ""),
"post_message": model_prompt_template.get("MODEL_USER_MESSAGE_END_TOKEN", ""),
"pre_message": model_prompt_template.get(
"MODEL_USER_MESSAGE_START_TOKEN", ""
),
"post_message": model_prompt_template.get(
"MODEL_USER_MESSAGE_END_TOKEN", ""
),
},
"assistant": {
"pre_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
"post_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""),
}
"pre_message": model_prompt_template.get(
"MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""
),
"post_message": model_prompt_template.get(
"MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""
),
},
},
final_prompt_value=model_prompt_template.get("MODEL_POST_PROMPT", ""),
final_prompt_value=model_prompt_template.get(
"MODEL_POST_PROMPT", ""
),
)
except:
except:
pass
def initialize(model, alias, api_base, api_version, debug, temperature, max_tokens, max_budget, telemetry, drop_params,
add_function_to_prompt, headers, save):
def initialize(
model,
alias,
api_base,
api_version,
debug,
temperature,
max_tokens,
max_budget,
telemetry,
drop_params,
add_function_to_prompt,
headers,
save,
):
global user_model, user_api_base, user_debug, user_max_tokens, user_temperature, user_telemetry, user_headers
user_model = model
user_debug = debug
@ -271,8 +330,10 @@ def initialize(model, alias, api_base, api_version, debug, temperature, max_toke
if api_base: # model-specific param
user_api_base = api_base
dynamic_config[user_model]["api_base"] = api_base
if api_version:
os.environ["AZURE_API_VERSION"] = api_version # set this for azure - litellm can read this from the env
if api_version:
os.environ[
"AZURE_API_VERSION"
] = api_version # set this for azure - litellm can read this from the env
if max_tokens: # model-specific param
user_max_tokens = max_tokens
dynamic_config[user_model]["max_tokens"] = max_tokens
@ -290,7 +351,7 @@ def initialize(model, alias, api_base, api_version, debug, temperature, max_toke
if max_budget: # litellm-specific param
litellm.max_budget = max_budget
dynamic_config["general"]["max_budget"] = max_budget
if debug: # litellm-specific param
if debug: # litellm-specific param
litellm.set_verbose = True
if save:
save_params_to_config(dynamic_config)
@ -300,16 +361,18 @@ def initialize(model, alias, api_base, api_version, debug, temperature, max_toke
user_telemetry = telemetry
usage_telemetry(feature="local_proxy_server")
def track_cost_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
kwargs, # kwargs to completion
completion_response, # response from completion
start_time,
end_time, # start/end time
):
# track cost like this
# track cost like this
# {
# "Oct12": {
# "gpt-4": 10,
# "claude-2": 12.01,
# "claude-2": 12.01,
# },
# "Oct 15": {
# "ollama/llama2": 0.0,
@ -317,28 +380,27 @@ def track_cost_callback(
# }
# }
try:
# for streaming responses
if "complete_streaming_response" in kwargs:
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
completion_response = kwargs["complete_streaming_response"]
input_text = kwargs["messages"]
output_text = completion_response["choices"][0]["message"]["content"]
response_cost = litellm.completion_cost(
model=kwargs["model"],
messages=input_text,
completion=output_text
model=kwargs["model"], messages=input_text, completion=output_text
)
model = kwargs['model']
model = kwargs["model"]
# for non streaming responses
else:
# we pass the completion_response obj
if kwargs["stream"] != True:
response_cost = litellm.completion_cost(completion_response=completion_response)
response_cost = litellm.completion_cost(
completion_response=completion_response
)
model = completion_response["model"]
# read/write from json for storing daily model costs
# read/write from json for storing daily model costs
cost_data = {}
try:
with open("costs.json") as f:
@ -346,6 +408,7 @@ def track_cost_callback(
except FileNotFoundError:
cost_data = {}
import datetime
date = datetime.datetime.now().strftime("%b-%d-%Y")
if date not in cost_data:
cost_data[date] = {}
@ -356,7 +419,7 @@ def track_cost_callback(
else:
cost_data[date][kwargs["model"]] = {
"cost": response_cost,
"num_requests": 1
"num_requests": 1,
}
with open("costs.json", "w") as f:
@ -367,25 +430,21 @@ def track_cost_callback(
def logger(
kwargs, # kwargs to completion
completion_response=None, # response from completion
start_time=None,
end_time=None # start/end time
kwargs, # kwargs to completion
completion_response=None, # response from completion
start_time=None,
end_time=None, # start/end time
):
log_event_type = kwargs['log_event_type']
log_event_type = kwargs["log_event_type"]
try:
if log_event_type == 'pre_api_call':
if log_event_type == "pre_api_call":
inference_params = copy.deepcopy(kwargs)
timestamp = inference_params.pop('start_time')
timestamp = inference_params.pop("start_time")
dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
log_data = {
dt_key: {
'pre_api_call': inference_params
}
}
log_data = {dt_key: {"pre_api_call": inference_params}}
try:
with open(log_file, 'r') as f:
with open(log_file, "r") as f:
existing_data = json.load(f)
except FileNotFoundError:
existing_data = {}
@ -393,7 +452,7 @@ def logger(
existing_data.update(log_data)
def write_to_log():
with open(log_file, 'w') as f:
with open(log_file, "w") as f:
json.dump(existing_data, f, indent=2)
thread = threading.Thread(target=write_to_log, daemon=True)
@ -413,14 +472,28 @@ litellm.failure_callback = [logger]
def model_list():
if user_model != None:
return dict(
data=[{"id": user_model, "object": "model", "created": 1677610602, "owned_by": "openai"}],
data=[
{
"id": user_model,
"object": "model",
"created": 1677610602,
"owned_by": "openai",
}
],
object="list",
)
else:
all_models = litellm.utils.get_valid_models()
return dict(
data=[{"id": model, "object": "model", "created": 1677610602, "owned_by": "openai"} for model in
all_models],
data=[
{
"id": model,
"object": "model",
"created": 1677610602,
"owned_by": "openai",
}
for model in all_models
],
object="list",
)
@ -445,7 +518,7 @@ async def chat_completion(request: Request):
def print_cost_logs():
with open('costs.json', 'r') as f:
with open("costs.json", "r") as f:
# print this in green
print("\033[1;32m")
print(f.read())
@ -455,7 +528,7 @@ def print_cost_logs():
@router.get("/ollama_logs")
async def retrieve_server_log(request: Request):
filepath = os.path.expanduser('~/.ollama/logs/server.log')
filepath = os.path.expanduser("~/.ollama/logs/server.log")
return FileResponse(filepath)