mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
Merge pull request #655 from coconut49/main
Create GitHub Action to automatically build docker images
This commit is contained in:
commit
123c0f41f8
4 changed files with 209 additions and 93 deletions
46
.github/workflows/docker.yml
vendored
Normal file
46
.github/workflows/docker.yml
vendored
Normal file
|
@ -0,0 +1,46 @@
|
||||||
|
name: Build Docker Images
|
||||||
|
on:
|
||||||
|
workflow_dispatch:
|
||||||
|
inputs:
|
||||||
|
tag:
|
||||||
|
description: "The tag version you want to build"
|
||||||
|
jobs:
|
||||||
|
build:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Set up QEMU
|
||||||
|
uses: docker/setup-qemu-action@v3
|
||||||
|
- name: Set up Docker Buildx
|
||||||
|
uses: docker/setup-buildx-action@v3
|
||||||
|
- name: Login to GitHub Container Registry
|
||||||
|
uses: docker/login-action@v3
|
||||||
|
with:
|
||||||
|
registry: ghcr.io
|
||||||
|
username: ${{ github.actor }}
|
||||||
|
password: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
- name: Extract metadata (tags, labels) for Docker
|
||||||
|
id: meta
|
||||||
|
uses: docker/metadata-action@v5
|
||||||
|
with:
|
||||||
|
images: ghcr.io/${{ github.repository }}
|
||||||
|
- name: Get tag to build
|
||||||
|
id: tag
|
||||||
|
run: |
|
||||||
|
echo "latest=ghcr.io/${{ github.repository }}:latest" >> $GITHUB_OUTPUT
|
||||||
|
if [[ -z "${{ github.event.inputs.tag }}" ]]; then
|
||||||
|
echo "versioned=ghcr.io/${{ github.repository }}:${{ github.ref_name }}" >> $GITHUB_OUTPUT
|
||||||
|
else
|
||||||
|
echo "versioned=ghcr.io/${{ github.repository }}:${{ github.event.inputs.tag }}" >> $GITHUB_OUTPUT
|
||||||
|
fi
|
||||||
|
- name: Build and release Docker images
|
||||||
|
uses: docker/build-push-action@v5
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
platforms: linux/amd64,linux/arm64
|
||||||
|
tags: |
|
||||||
|
${{ steps.tag.outputs.latest }}
|
||||||
|
${{ steps.tag.outputs.versioned }}
|
||||||
|
labels: ${{ steps.meta.outputs.labels }}
|
||||||
|
push: true
|
|
@ -1,13 +1,10 @@
|
||||||
FROM python:3.10
|
FROM python:3.10
|
||||||
|
|
||||||
|
ENV LITELLM_CONFIG_PATH="/litellm.secrets.toml"
|
||||||
COPY . /app
|
COPY . /app
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
RUN mkdir -p /root/.config/litellm/ && cp /app/secrets_template.toml /root/.config/litellm/litellm.secrets.toml
|
|
||||||
RUN pip install -r requirements.txt
|
RUN pip install -r requirements.txt
|
||||||
|
|
||||||
WORKDIR /app/litellm/proxy
|
WORKDIR /app/litellm/proxy
|
||||||
EXPOSE 8000
|
EXPOSE 8000
|
||||||
ENTRYPOINT [ "python3", "proxy_cli.py" ]
|
ENTRYPOINT [ "python3", "proxy_cli.py" ]
|
||||||
# TODO - Set up a GitHub Action to automatically create the Docker image,
|
|
||||||
# and then we can quickly deploy the litellm proxy in the following way
|
|
||||||
# `docker run -p 8000:8000 -v ./secrets_template.toml:/root/.config/litellm/litellm.secrets.toml ghcr.io/BerriAI/litellm:v0.8.4`
|
|
|
@ -9,7 +9,7 @@ import operator
|
||||||
config_filename = "litellm.secrets.toml"
|
config_filename = "litellm.secrets.toml"
|
||||||
# Using appdirs to determine user-specific config path
|
# Using appdirs to determine user-specific config path
|
||||||
config_dir = appdirs.user_config_dir("litellm")
|
config_dir = appdirs.user_config_dir("litellm")
|
||||||
user_config_path = os.path.join(config_dir, config_filename)
|
user_config_path = os.getenv("LITELLM_CONFIG_PATH", os.path.join(config_dir, config_filename))
|
||||||
|
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
from importlib import resources
|
from importlib import resources
|
||||||
|
|
|
@ -18,7 +18,20 @@ except ImportError:
|
||||||
import subprocess
|
import subprocess
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
subprocess.check_call([sys.executable, "-m", "pip", "install", "uvicorn", "fastapi", "tomli", "appdirs", "tomli-w", "backoff"])
|
subprocess.check_call(
|
||||||
|
[
|
||||||
|
sys.executable,
|
||||||
|
"-m",
|
||||||
|
"pip",
|
||||||
|
"install",
|
||||||
|
"uvicorn",
|
||||||
|
"fastapi",
|
||||||
|
"tomli",
|
||||||
|
"appdirs",
|
||||||
|
"tomli-w",
|
||||||
|
"backoff",
|
||||||
|
]
|
||||||
|
)
|
||||||
import uvicorn
|
import uvicorn
|
||||||
import fastapi
|
import fastapi
|
||||||
import tomli as tomllib
|
import tomli as tomllib
|
||||||
|
@ -26,9 +39,9 @@ except ImportError:
|
||||||
import tomli_w
|
import tomli_w
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from .llm import litellm_completion
|
from .llm import litellm_completion
|
||||||
except ImportError as e:
|
except ImportError as e:
|
||||||
from llm import litellm_completion # type: ignore
|
from llm import litellm_completion # type: ignore
|
||||||
|
|
||||||
import random
|
import random
|
||||||
|
|
||||||
|
@ -51,14 +64,17 @@ def generate_feedback_box():
|
||||||
message = random.choice(list_of_messages)
|
message = random.choice(list_of_messages)
|
||||||
|
|
||||||
print()
|
print()
|
||||||
print('\033[1;37m' + '#' + '-' * box_width + '#\033[0m')
|
print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m")
|
||||||
print('\033[1;37m' + '#' + ' ' * box_width + '#\033[0m')
|
print("\033[1;37m" + "#" + " " * box_width + "#\033[0m")
|
||||||
print('\033[1;37m' + '# {:^59} #\033[0m'.format(message))
|
print("\033[1;37m" + "# {:^59} #\033[0m".format(message))
|
||||||
print('\033[1;37m' + '# {:^59} #\033[0m'.format('https://github.com/BerriAI/litellm/issues/new'))
|
print(
|
||||||
print('\033[1;37m' + '#' + ' ' * box_width + '#\033[0m')
|
"\033[1;37m"
|
||||||
print('\033[1;37m' + '#' + '-' * box_width + '#\033[0m')
|
+ "# {:^59} #\033[0m".format("https://github.com/BerriAI/litellm/issues/new")
|
||||||
|
)
|
||||||
|
print("\033[1;37m" + "#" + " " * box_width + "#\033[0m")
|
||||||
|
print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m")
|
||||||
print()
|
print()
|
||||||
print(' Thank you for using LiteLLM! - Krrish & Ishaan')
|
print(" Thank you for using LiteLLM! - Krrish & Ishaan")
|
||||||
print()
|
print()
|
||||||
print()
|
print()
|
||||||
|
|
||||||
|
@ -66,7 +82,9 @@ def generate_feedback_box():
|
||||||
generate_feedback_box()
|
generate_feedback_box()
|
||||||
|
|
||||||
print()
|
print()
|
||||||
print("\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m")
|
print(
|
||||||
|
"\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m"
|
||||||
|
)
|
||||||
print()
|
print()
|
||||||
print("\033[1;34mDocs: https://docs.litellm.ai/docs/proxy_server\033[0m")
|
print("\033[1;34mDocs: https://docs.litellm.ai/docs/proxy_server\033[0m")
|
||||||
print()
|
print()
|
||||||
|
@ -105,8 +123,10 @@ model_router = litellm.Router()
|
||||||
config_filename = "litellm.secrets.toml"
|
config_filename = "litellm.secrets.toml"
|
||||||
config_dir = os.getcwd()
|
config_dir = os.getcwd()
|
||||||
config_dir = appdirs.user_config_dir("litellm")
|
config_dir = appdirs.user_config_dir("litellm")
|
||||||
user_config_path = os.path.join(config_dir, config_filename)
|
user_config_path = os.getenv(
|
||||||
log_file = 'api_log.json'
|
"LITELLM_CONFIG_PATH", os.path.join(config_dir, config_filename)
|
||||||
|
)
|
||||||
|
log_file = "api_log.json"
|
||||||
|
|
||||||
|
|
||||||
#### HELPER FUNCTIONS ####
|
#### HELPER FUNCTIONS ####
|
||||||
|
@ -124,12 +144,13 @@ def find_avatar_url(role):
|
||||||
|
|
||||||
|
|
||||||
def usage_telemetry(
|
def usage_telemetry(
|
||||||
feature: str): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
|
feature: str,
|
||||||
|
): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
|
||||||
if user_telemetry:
|
if user_telemetry:
|
||||||
data = {
|
data = {"feature": feature} # "local_proxy_server"
|
||||||
"feature": feature # "local_proxy_server"
|
threading.Thread(
|
||||||
}
|
target=litellm.utils.litellm_telemetry, args=(data,), daemon=True
|
||||||
threading.Thread(target=litellm.utils.litellm_telemetry, args=(data,), daemon=True).start()
|
).start()
|
||||||
|
|
||||||
|
|
||||||
def add_keys_to_config(key, value):
|
def add_keys_to_config(key, value):
|
||||||
|
@ -142,11 +163,11 @@ def add_keys_to_config(key, value):
|
||||||
# File doesn't exist, create empty config
|
# File doesn't exist, create empty config
|
||||||
config = {}
|
config = {}
|
||||||
|
|
||||||
# Add new key
|
# Add new key
|
||||||
config.setdefault('keys', {})[key] = value
|
config.setdefault("keys", {})[key] = value
|
||||||
|
|
||||||
# Write config to file
|
# Write config to file
|
||||||
with open(user_config_path, 'wb') as f:
|
with open(user_config_path, "wb") as f:
|
||||||
tomli_w.dump(config, f)
|
tomli_w.dump(config, f)
|
||||||
|
|
||||||
|
|
||||||
|
@ -160,15 +181,15 @@ def save_params_to_config(data: dict):
|
||||||
# File doesn't exist, create empty config
|
# File doesn't exist, create empty config
|
||||||
config = {}
|
config = {}
|
||||||
|
|
||||||
config.setdefault('general', {})
|
config.setdefault("general", {})
|
||||||
|
|
||||||
## general config
|
## general config
|
||||||
general_settings = data["general"]
|
general_settings = data["general"]
|
||||||
|
|
||||||
for key, value in general_settings.items():
|
for key, value in general_settings.items():
|
||||||
config["general"][key] = value
|
config["general"][key] = value
|
||||||
|
|
||||||
## model-specific config
|
## model-specific config
|
||||||
config.setdefault("model", {})
|
config.setdefault("model", {})
|
||||||
config["model"].setdefault(user_model, {})
|
config["model"].setdefault(user_model, {})
|
||||||
|
|
||||||
|
@ -178,13 +199,13 @@ def save_params_to_config(data: dict):
|
||||||
for key, value in user_model_config.items():
|
for key, value in user_model_config.items():
|
||||||
config["model"][model_key][key] = value
|
config["model"][model_key][key] = value
|
||||||
|
|
||||||
# Write config to file
|
# Write config to file
|
||||||
with open(user_config_path, 'wb') as f:
|
with open(user_config_path, "wb") as f:
|
||||||
tomli_w.dump(config, f)
|
tomli_w.dump(config, f)
|
||||||
|
|
||||||
|
|
||||||
def load_config():
|
def load_config():
|
||||||
try:
|
try:
|
||||||
global user_config, user_api_base, user_max_tokens, user_temperature, user_model, local_logging
|
global user_config, user_api_base, user_max_tokens, user_temperature, user_model, local_logging
|
||||||
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
|
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
|
||||||
with open(user_config_path, "rb") as f:
|
with open(user_config_path, "rb") as f:
|
||||||
|
@ -193,16 +214,23 @@ def load_config():
|
||||||
## load keys
|
## load keys
|
||||||
if "keys" in user_config:
|
if "keys" in user_config:
|
||||||
for key in user_config["keys"]:
|
for key in user_config["keys"]:
|
||||||
os.environ[key] = user_config["keys"][key] # litellm can read keys from the environment
|
os.environ[key] = user_config["keys"][
|
||||||
|
key
|
||||||
|
] # litellm can read keys from the environment
|
||||||
## settings
|
## settings
|
||||||
if "general" in user_config:
|
if "general" in user_config:
|
||||||
litellm.add_function_to_prompt = user_config["general"].get("add_function_to_prompt",
|
litellm.add_function_to_prompt = user_config["general"].get(
|
||||||
True) # by default add function to prompt if unsupported by provider
|
"add_function_to_prompt", True
|
||||||
litellm.drop_params = user_config["general"].get("drop_params",
|
) # by default add function to prompt if unsupported by provider
|
||||||
True) # by default drop params if unsupported by provider
|
litellm.drop_params = user_config["general"].get(
|
||||||
litellm.model_fallbacks = user_config["general"].get("fallbacks",
|
"drop_params", True
|
||||||
None) # fallback models in case initial completion call fails
|
) # by default drop params if unsupported by provider
|
||||||
default_model = user_config["general"].get("default_model", None) # route all requests to this model.
|
litellm.model_fallbacks = user_config["general"].get(
|
||||||
|
"fallbacks", None
|
||||||
|
) # fallback models in case initial completion call fails
|
||||||
|
default_model = user_config["general"].get(
|
||||||
|
"default_model", None
|
||||||
|
) # route all requests to this model.
|
||||||
|
|
||||||
local_logging = user_config["general"].get("local_logging", True)
|
local_logging = user_config["general"].get("local_logging", True)
|
||||||
|
|
||||||
|
@ -215,10 +243,10 @@ def load_config():
|
||||||
if user_model in user_config["model"]:
|
if user_model in user_config["model"]:
|
||||||
model_config = user_config["model"][user_model]
|
model_config = user_config["model"][user_model]
|
||||||
model_list = []
|
model_list = []
|
||||||
for model in user_config["model"]:
|
for model in user_config["model"]:
|
||||||
if "model_list" in user_config["model"][model]:
|
if "model_list" in user_config["model"][model]:
|
||||||
model_list.extend(user_config["model"][model]["model_list"])
|
model_list.extend(user_config["model"][model]["model_list"])
|
||||||
if len(model_list) > 0:
|
if len(model_list) > 0:
|
||||||
model_router.set_model_list(model_list=model_list)
|
model_router.set_model_list(model_list=model_list)
|
||||||
|
|
||||||
print_verbose(f"user_config: {user_config}")
|
print_verbose(f"user_config: {user_config}")
|
||||||
|
@ -234,32 +262,63 @@ def load_config():
|
||||||
## custom prompt template
|
## custom prompt template
|
||||||
if "prompt_template" in model_config:
|
if "prompt_template" in model_config:
|
||||||
model_prompt_template = model_config["prompt_template"]
|
model_prompt_template = model_config["prompt_template"]
|
||||||
if len(model_prompt_template.keys()) > 0: # if user has initialized this at all
|
if (
|
||||||
|
len(model_prompt_template.keys()) > 0
|
||||||
|
): # if user has initialized this at all
|
||||||
litellm.register_prompt_template(
|
litellm.register_prompt_template(
|
||||||
model=user_model,
|
model=user_model,
|
||||||
initial_prompt_value=model_prompt_template.get("MODEL_PRE_PROMPT", ""),
|
initial_prompt_value=model_prompt_template.get(
|
||||||
|
"MODEL_PRE_PROMPT", ""
|
||||||
|
),
|
||||||
roles={
|
roles={
|
||||||
"system": {
|
"system": {
|
||||||
"pre_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
|
"pre_message": model_prompt_template.get(
|
||||||
"post_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
|
"MODEL_SYSTEM_MESSAGE_START_TOKEN", ""
|
||||||
|
),
|
||||||
|
"post_message": model_prompt_template.get(
|
||||||
|
"MODEL_SYSTEM_MESSAGE_END_TOKEN", ""
|
||||||
|
),
|
||||||
},
|
},
|
||||||
"user": {
|
"user": {
|
||||||
"pre_message": model_prompt_template.get("MODEL_USER_MESSAGE_START_TOKEN", ""),
|
"pre_message": model_prompt_template.get(
|
||||||
"post_message": model_prompt_template.get("MODEL_USER_MESSAGE_END_TOKEN", ""),
|
"MODEL_USER_MESSAGE_START_TOKEN", ""
|
||||||
|
),
|
||||||
|
"post_message": model_prompt_template.get(
|
||||||
|
"MODEL_USER_MESSAGE_END_TOKEN", ""
|
||||||
|
),
|
||||||
},
|
},
|
||||||
"assistant": {
|
"assistant": {
|
||||||
"pre_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
|
"pre_message": model_prompt_template.get(
|
||||||
"post_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""),
|
"MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""
|
||||||
}
|
),
|
||||||
|
"post_message": model_prompt_template.get(
|
||||||
|
"MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""
|
||||||
|
),
|
||||||
|
},
|
||||||
},
|
},
|
||||||
final_prompt_value=model_prompt_template.get("MODEL_POST_PROMPT", ""),
|
final_prompt_value=model_prompt_template.get(
|
||||||
|
"MODEL_POST_PROMPT", ""
|
||||||
|
),
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
def initialize(model, alias, api_base, api_version, debug, temperature, max_tokens, max_budget, telemetry, drop_params,
|
def initialize(
|
||||||
add_function_to_prompt, headers, save):
|
model,
|
||||||
|
alias,
|
||||||
|
api_base,
|
||||||
|
api_version,
|
||||||
|
debug,
|
||||||
|
temperature,
|
||||||
|
max_tokens,
|
||||||
|
max_budget,
|
||||||
|
telemetry,
|
||||||
|
drop_params,
|
||||||
|
add_function_to_prompt,
|
||||||
|
headers,
|
||||||
|
save,
|
||||||
|
):
|
||||||
global user_model, user_api_base, user_debug, user_max_tokens, user_temperature, user_telemetry, user_headers
|
global user_model, user_api_base, user_debug, user_max_tokens, user_temperature, user_telemetry, user_headers
|
||||||
user_model = model
|
user_model = model
|
||||||
user_debug = debug
|
user_debug = debug
|
||||||
|
@ -271,8 +330,10 @@ def initialize(model, alias, api_base, api_version, debug, temperature, max_toke
|
||||||
if api_base: # model-specific param
|
if api_base: # model-specific param
|
||||||
user_api_base = api_base
|
user_api_base = api_base
|
||||||
dynamic_config[user_model]["api_base"] = api_base
|
dynamic_config[user_model]["api_base"] = api_base
|
||||||
if api_version:
|
if api_version:
|
||||||
os.environ["AZURE_API_VERSION"] = api_version # set this for azure - litellm can read this from the env
|
os.environ[
|
||||||
|
"AZURE_API_VERSION"
|
||||||
|
] = api_version # set this for azure - litellm can read this from the env
|
||||||
if max_tokens: # model-specific param
|
if max_tokens: # model-specific param
|
||||||
user_max_tokens = max_tokens
|
user_max_tokens = max_tokens
|
||||||
dynamic_config[user_model]["max_tokens"] = max_tokens
|
dynamic_config[user_model]["max_tokens"] = max_tokens
|
||||||
|
@ -290,7 +351,7 @@ def initialize(model, alias, api_base, api_version, debug, temperature, max_toke
|
||||||
if max_budget: # litellm-specific param
|
if max_budget: # litellm-specific param
|
||||||
litellm.max_budget = max_budget
|
litellm.max_budget = max_budget
|
||||||
dynamic_config["general"]["max_budget"] = max_budget
|
dynamic_config["general"]["max_budget"] = max_budget
|
||||||
if debug: # litellm-specific param
|
if debug: # litellm-specific param
|
||||||
litellm.set_verbose = True
|
litellm.set_verbose = True
|
||||||
if save:
|
if save:
|
||||||
save_params_to_config(dynamic_config)
|
save_params_to_config(dynamic_config)
|
||||||
|
@ -300,16 +361,18 @@ def initialize(model, alias, api_base, api_version, debug, temperature, max_toke
|
||||||
user_telemetry = telemetry
|
user_telemetry = telemetry
|
||||||
usage_telemetry(feature="local_proxy_server")
|
usage_telemetry(feature="local_proxy_server")
|
||||||
|
|
||||||
|
|
||||||
def track_cost_callback(
|
def track_cost_callback(
|
||||||
kwargs, # kwargs to completion
|
kwargs, # kwargs to completion
|
||||||
completion_response, # response from completion
|
completion_response, # response from completion
|
||||||
start_time, end_time # start/end time
|
start_time,
|
||||||
|
end_time, # start/end time
|
||||||
):
|
):
|
||||||
# track cost like this
|
# track cost like this
|
||||||
# {
|
# {
|
||||||
# "Oct12": {
|
# "Oct12": {
|
||||||
# "gpt-4": 10,
|
# "gpt-4": 10,
|
||||||
# "claude-2": 12.01,
|
# "claude-2": 12.01,
|
||||||
# },
|
# },
|
||||||
# "Oct 15": {
|
# "Oct 15": {
|
||||||
# "ollama/llama2": 0.0,
|
# "ollama/llama2": 0.0,
|
||||||
|
@ -317,28 +380,27 @@ def track_cost_callback(
|
||||||
# }
|
# }
|
||||||
# }
|
# }
|
||||||
try:
|
try:
|
||||||
|
|
||||||
# for streaming responses
|
# for streaming responses
|
||||||
if "complete_streaming_response" in kwargs:
|
if "complete_streaming_response" in kwargs:
|
||||||
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
|
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
|
||||||
completion_response = kwargs["complete_streaming_response"]
|
completion_response = kwargs["complete_streaming_response"]
|
||||||
input_text = kwargs["messages"]
|
input_text = kwargs["messages"]
|
||||||
output_text = completion_response["choices"][0]["message"]["content"]
|
output_text = completion_response["choices"][0]["message"]["content"]
|
||||||
response_cost = litellm.completion_cost(
|
response_cost = litellm.completion_cost(
|
||||||
model=kwargs["model"],
|
model=kwargs["model"], messages=input_text, completion=output_text
|
||||||
messages=input_text,
|
|
||||||
completion=output_text
|
|
||||||
)
|
)
|
||||||
model = kwargs['model']
|
model = kwargs["model"]
|
||||||
|
|
||||||
# for non streaming responses
|
# for non streaming responses
|
||||||
else:
|
else:
|
||||||
# we pass the completion_response obj
|
# we pass the completion_response obj
|
||||||
if kwargs["stream"] != True:
|
if kwargs["stream"] != True:
|
||||||
response_cost = litellm.completion_cost(completion_response=completion_response)
|
response_cost = litellm.completion_cost(
|
||||||
|
completion_response=completion_response
|
||||||
|
)
|
||||||
model = completion_response["model"]
|
model = completion_response["model"]
|
||||||
|
|
||||||
# read/write from json for storing daily model costs
|
# read/write from json for storing daily model costs
|
||||||
cost_data = {}
|
cost_data = {}
|
||||||
try:
|
try:
|
||||||
with open("costs.json") as f:
|
with open("costs.json") as f:
|
||||||
|
@ -346,6 +408,7 @@ def track_cost_callback(
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
cost_data = {}
|
cost_data = {}
|
||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
date = datetime.datetime.now().strftime("%b-%d-%Y")
|
date = datetime.datetime.now().strftime("%b-%d-%Y")
|
||||||
if date not in cost_data:
|
if date not in cost_data:
|
||||||
cost_data[date] = {}
|
cost_data[date] = {}
|
||||||
|
@ -356,7 +419,7 @@ def track_cost_callback(
|
||||||
else:
|
else:
|
||||||
cost_data[date][kwargs["model"]] = {
|
cost_data[date][kwargs["model"]] = {
|
||||||
"cost": response_cost,
|
"cost": response_cost,
|
||||||
"num_requests": 1
|
"num_requests": 1,
|
||||||
}
|
}
|
||||||
|
|
||||||
with open("costs.json", "w") as f:
|
with open("costs.json", "w") as f:
|
||||||
|
@ -367,25 +430,21 @@ def track_cost_callback(
|
||||||
|
|
||||||
|
|
||||||
def logger(
|
def logger(
|
||||||
kwargs, # kwargs to completion
|
kwargs, # kwargs to completion
|
||||||
completion_response=None, # response from completion
|
completion_response=None, # response from completion
|
||||||
start_time=None,
|
start_time=None,
|
||||||
end_time=None # start/end time
|
end_time=None, # start/end time
|
||||||
):
|
):
|
||||||
log_event_type = kwargs['log_event_type']
|
log_event_type = kwargs["log_event_type"]
|
||||||
try:
|
try:
|
||||||
if log_event_type == 'pre_api_call':
|
if log_event_type == "pre_api_call":
|
||||||
inference_params = copy.deepcopy(kwargs)
|
inference_params = copy.deepcopy(kwargs)
|
||||||
timestamp = inference_params.pop('start_time')
|
timestamp = inference_params.pop("start_time")
|
||||||
dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
|
dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
|
||||||
log_data = {
|
log_data = {dt_key: {"pre_api_call": inference_params}}
|
||||||
dt_key: {
|
|
||||||
'pre_api_call': inference_params
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
with open(log_file, 'r') as f:
|
with open(log_file, "r") as f:
|
||||||
existing_data = json.load(f)
|
existing_data = json.load(f)
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
existing_data = {}
|
existing_data = {}
|
||||||
|
@ -393,7 +452,7 @@ def logger(
|
||||||
existing_data.update(log_data)
|
existing_data.update(log_data)
|
||||||
|
|
||||||
def write_to_log():
|
def write_to_log():
|
||||||
with open(log_file, 'w') as f:
|
with open(log_file, "w") as f:
|
||||||
json.dump(existing_data, f, indent=2)
|
json.dump(existing_data, f, indent=2)
|
||||||
|
|
||||||
thread = threading.Thread(target=write_to_log, daemon=True)
|
thread = threading.Thread(target=write_to_log, daemon=True)
|
||||||
|
@ -413,14 +472,28 @@ litellm.failure_callback = [logger]
|
||||||
def model_list():
|
def model_list():
|
||||||
if user_model != None:
|
if user_model != None:
|
||||||
return dict(
|
return dict(
|
||||||
data=[{"id": user_model, "object": "model", "created": 1677610602, "owned_by": "openai"}],
|
data=[
|
||||||
|
{
|
||||||
|
"id": user_model,
|
||||||
|
"object": "model",
|
||||||
|
"created": 1677610602,
|
||||||
|
"owned_by": "openai",
|
||||||
|
}
|
||||||
|
],
|
||||||
object="list",
|
object="list",
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
all_models = litellm.utils.get_valid_models()
|
all_models = litellm.utils.get_valid_models()
|
||||||
return dict(
|
return dict(
|
||||||
data=[{"id": model, "object": "model", "created": 1677610602, "owned_by": "openai"} for model in
|
data=[
|
||||||
all_models],
|
{
|
||||||
|
"id": model,
|
||||||
|
"object": "model",
|
||||||
|
"created": 1677610602,
|
||||||
|
"owned_by": "openai",
|
||||||
|
}
|
||||||
|
for model in all_models
|
||||||
|
],
|
||||||
object="list",
|
object="list",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -445,7 +518,7 @@ async def chat_completion(request: Request):
|
||||||
|
|
||||||
|
|
||||||
def print_cost_logs():
|
def print_cost_logs():
|
||||||
with open('costs.json', 'r') as f:
|
with open("costs.json", "r") as f:
|
||||||
# print this in green
|
# print this in green
|
||||||
print("\033[1;32m")
|
print("\033[1;32m")
|
||||||
print(f.read())
|
print(f.read())
|
||||||
|
@ -455,7 +528,7 @@ def print_cost_logs():
|
||||||
|
|
||||||
@router.get("/ollama_logs")
|
@router.get("/ollama_logs")
|
||||||
async def retrieve_server_log(request: Request):
|
async def retrieve_server_log(request: Request):
|
||||||
filepath = os.path.expanduser('~/.ollama/logs/server.log')
|
filepath = os.path.expanduser("~/.ollama/logs/server.log")
|
||||||
return FileResponse(filepath)
|
return FileResponse(filepath)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue