mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
Add anthropic thinking + reasoning content support (#8778)
* feat(anthropic/chat/transformation.py): add anthropic thinking param support * feat(anthropic/chat/transformation.py): support returning thinking content for anthropic on streaming responses * feat(anthropic/chat/transformation.py): return list of thinking blocks (include block signature) allows usage in tool call responses * fix(types/utils.py): extract and map reasoning_content from anthropic as content str * test: add testing to ensure thinking_blocks are returned at the root * fix(anthropic/chat/handler.py): return thinking blocks on streaming - include signature * feat(factory.py): handle anthropic thinking blocks translation if in assistant response * test: handle openai internal instability * test: handle openai audio instability * ci: pin anthropic dep * test: handle openai audio instability * fix: fix linting error * refactor(anthropic/chat/transformation.py): refactor function to remain <50 LOC * fix: fix linting error * fix: fix linting error * fix: fix linting error * fix: fix linting error
This commit is contained in:
parent
9914c166b7
commit
142b195784
16 changed files with 332 additions and 62 deletions
|
@ -157,6 +157,113 @@ def test_aaparallel_function_call(model):
|
|||
# test_parallel_function_call()
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model",
|
||||
[
|
||||
"anthropic/claude-3-7-sonnet-20250219",
|
||||
],
|
||||
)
|
||||
@pytest.mark.flaky(retries=3, delay=1)
|
||||
def test_aaparallel_function_call_with_anthropic_thinking(model):
|
||||
try:
|
||||
litellm._turn_on_debug()
|
||||
litellm.modify_params = True
|
||||
# Step 1: send the conversation and available functions to the model
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
|
||||
}
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
response = litellm.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto", # auto is default, but we'll be explicit
|
||||
thinking={"type": "enabled", "budget_tokens": 1024},
|
||||
)
|
||||
print("Response\n", response)
|
||||
response_message = response.choices[0].message
|
||||
tool_calls = response_message.tool_calls
|
||||
|
||||
print("Expecting there to be 3 tool calls")
|
||||
assert (
|
||||
len(tool_calls) > 0
|
||||
) # this has to call the function for SF, Tokyo and paris
|
||||
|
||||
# Step 2: check if the model wanted to call a function
|
||||
print(f"tool_calls: {tool_calls}")
|
||||
if tool_calls:
|
||||
# Step 3: call the function
|
||||
# Note: the JSON response may not always be valid; be sure to handle errors
|
||||
available_functions = {
|
||||
"get_current_weather": get_current_weather,
|
||||
} # only one function in this example, but you can have multiple
|
||||
messages.append(
|
||||
response_message
|
||||
) # extend conversation with assistant's reply
|
||||
print("Response message\n", response_message)
|
||||
# Step 4: send the info for each function call and function response to the model
|
||||
for tool_call in tool_calls:
|
||||
function_name = tool_call.function.name
|
||||
if function_name not in available_functions:
|
||||
# the model called a function that does not exist in available_functions - don't try calling anything
|
||||
return
|
||||
function_to_call = available_functions[function_name]
|
||||
function_args = json.loads(tool_call.function.arguments)
|
||||
function_response = function_to_call(
|
||||
location=function_args.get("location"),
|
||||
unit=function_args.get("unit"),
|
||||
)
|
||||
messages.append(
|
||||
{
|
||||
"tool_call_id": tool_call.id,
|
||||
"role": "tool",
|
||||
"name": function_name,
|
||||
"content": function_response,
|
||||
}
|
||||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
seed=22,
|
||||
# tools=tools,
|
||||
drop_params=True,
|
||||
thinking={"type": "enabled", "budget_tokens": 1024},
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
except litellm.InternalServerError as e:
|
||||
print(e)
|
||||
except litellm.RateLimitError as e:
|
||||
print(e)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue