mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
auto-detect HF task
This commit is contained in:
parent
4621582d49
commit
156d4f27de
1 changed files with 54 additions and 3 deletions
|
@ -25,6 +25,52 @@ def validate_environment(api_key):
|
|||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
tgi_models_cache = None
|
||||
conv_models_cache = None
|
||||
def read_tgi_conv_models():
|
||||
try:
|
||||
global tgi_models_cache, conv_models_cache
|
||||
# Check if the cache is already populated
|
||||
# so we don't keep on reading txt file if there are 1k requests
|
||||
if (tgi_models_cache is not None) and (conv_models_cache is not None):
|
||||
return tgi_models_cache, conv_models_cache
|
||||
# If not, read the file and populate the cache
|
||||
tgi_models = set()
|
||||
script_directory = os.path.dirname(os.path.abspath(__file__))
|
||||
# Construct the file path relative to the script's directory
|
||||
file_path = os.path.join(script_directory, "huggingface_llms_metadata", "hf_text_generation_models.txt")
|
||||
|
||||
with open(file_path, 'r') as file:
|
||||
for line in file:
|
||||
tgi_models.add(line.strip())
|
||||
|
||||
# Cache the set for future use
|
||||
tgi_models_cache = tgi_models
|
||||
|
||||
# If not, read the file and populate the cache
|
||||
file_path = os.path.join(script_directory, "huggingface_llms_metadata", "hf_conversational_models.txt")
|
||||
conv_models = set()
|
||||
with open(file_path, 'r') as file:
|
||||
for line in file:
|
||||
conv_models.add(line.strip())
|
||||
# Cache the set for future use
|
||||
conv_models_cache = conv_models
|
||||
return tgi_models, conv_models
|
||||
except:
|
||||
return set(), set()
|
||||
|
||||
|
||||
def get_hf_task_for_model(model):
|
||||
# read text file, cast it to set
|
||||
# read the file called "huggingface_llms_metadata/hf_text_generation_models.txt"
|
||||
tgi_models, conversational_models = read_tgi_conv_models()
|
||||
if model in tgi_models:
|
||||
return "text-generation-inference"
|
||||
elif model in conversational_models:
|
||||
return "conversational"
|
||||
else:
|
||||
return None
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
|
@ -40,7 +86,8 @@ def completion(
|
|||
logger_fn=None,
|
||||
):
|
||||
headers = validate_environment(api_key)
|
||||
task = optional_params.pop("task")
|
||||
task = get_hf_task_for_model(model)
|
||||
print_verbose(f"{model}, {task}")
|
||||
completion_url = ""
|
||||
input_text = None
|
||||
if "https" in model:
|
||||
|
@ -59,6 +106,7 @@ def completion(
|
|||
inference_params = copy.deepcopy(optional_params)
|
||||
inference_params.pop("details")
|
||||
inference_params.pop("return_full_text")
|
||||
inference_params.pop("task")
|
||||
past_user_inputs = []
|
||||
generated_responses = []
|
||||
text = ""
|
||||
|
@ -79,6 +127,7 @@ def completion(
|
|||
}
|
||||
input_text = "".join(message["content"] for message in messages)
|
||||
elif task == "text-generation-inference":
|
||||
# always send "details" and "return_full_text" as params
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
|
@ -92,7 +141,6 @@ def completion(
|
|||
prompt = prompt_factory(model=model, messages=messages)
|
||||
if "https://api-inference.huggingface.co/models" in completion_url:
|
||||
inference_params = copy.deepcopy(optional_params)
|
||||
inference_params.pop("details")
|
||||
data = {
|
||||
"inputs": prompt,
|
||||
"parameters": inference_params,
|
||||
|
@ -105,7 +153,9 @@ def completion(
|
|||
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False,
|
||||
}
|
||||
input_text = prompt
|
||||
elif task == "other" or task == None:
|
||||
else:
|
||||
# Non TGI and Conversational llms
|
||||
# We need this branch, it removes 'details' and 'return_full_text' from params
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
|
@ -120,6 +170,7 @@ def completion(
|
|||
inference_params = copy.deepcopy(optional_params)
|
||||
inference_params.pop("details")
|
||||
inference_params.pop("return_full_text")
|
||||
inference_params.pop("task")
|
||||
data = {
|
||||
"inputs": prompt,
|
||||
"parameters": inference_params,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue