LiteLLM Minor Fixes & Improvements (09/24/2024) (#5880)

* LiteLLM Minor Fixes & Improvements (09/23/2024)  (#5842)

* feat(auth_utils.py): enable admin to allow client-side credentials to be passed

Makes it easier for devs to experiment with finetuned fireworks ai models

* feat(router.py): allow setting configurable_clientside_auth_params for a model

Closes https://github.com/BerriAI/litellm/issues/5843

* build(model_prices_and_context_window.json): fix anthropic claude-3-5-sonnet max output token limit

Fixes https://github.com/BerriAI/litellm/issues/5850

* fix(azure_ai/): support content list for azure ai

Fixes https://github.com/BerriAI/litellm/issues/4237

* fix(litellm_logging.py): always set saved_cache_cost

Set to 0 by default

* fix(fireworks_ai/cost_calculator.py): add fireworks ai default pricing

handles calling 405b+ size models

* fix(slack_alerting.py): fix error alerting for failed spend tracking

Fixes regression with slack alerting error monitoring

* fix(vertex_and_google_ai_studio_gemini.py): handle gemini no candidates in streaming chunk error

* docs(bedrock.md): add llama3-1 models

* test: fix tests

* fix(azure_ai/chat): fix transformation for azure ai calls

* feat(azure_ai/embed): Add azure ai embeddings support

Closes https://github.com/BerriAI/litellm/issues/5861

* fix(azure_ai/embed): enable async embedding

* feat(azure_ai/embed): support azure ai multimodal embeddings

* fix(azure_ai/embed): support async multi modal embeddings

* feat(together_ai/embed): support together ai embedding calls

* feat(rerank/main.py): log source documents for rerank endpoints to langfuse

improves rerank endpoint logging

* fix(langfuse.py): support logging `/audio/speech` input to langfuse

* test(test_embedding.py): fix test

* test(test_completion_cost.py): fix helper util
This commit is contained in:
Krish Dholakia 2024-09-25 22:11:57 -07:00 committed by GitHub
parent 5bc5eaff8a
commit 16c0307eab
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
25 changed files with 1675 additions and 340 deletions

View file

@ -0,0 +1,296 @@
import asyncio
import copy
import json
import os
from copy import deepcopy
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
import httpx
from openai import OpenAI
import litellm
from litellm.llms.cohere.embed import embedding as cohere_embedding
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
_get_httpx_client,
get_async_httpx_client,
)
from litellm.llms.OpenAI.openai import OpenAIChatCompletion
from litellm.types.llms.azure_ai import ImageEmbeddingRequest
from litellm.types.utils import Embedding, EmbeddingResponse
from litellm.utils import convert_to_model_response_object, is_base64_encoded
from .cohere_transformation import AzureAICohereConfig
class AzureAIEmbedding(OpenAIChatCompletion):
def _process_response(
self,
image_embedding_responses: Optional[List],
text_embedding_responses: Optional[List],
image_embeddings_idx: List[int],
model_response: EmbeddingResponse,
input: List,
):
combined_responses = []
if (
image_embedding_responses is not None
and text_embedding_responses is not None
):
# Combine and order the results
text_idx = 0
image_idx = 0
for idx in range(len(input)):
if idx in image_embeddings_idx:
combined_responses.append(image_embedding_responses[image_idx])
image_idx += 1
else:
combined_responses.append(text_embedding_responses[text_idx])
text_idx += 1
model_response.data = combined_responses
elif image_embedding_responses is not None:
model_response.data = image_embedding_responses
elif text_embedding_responses is not None:
model_response.data = text_embedding_responses
response = AzureAICohereConfig()._transform_response(response=model_response) # type: ignore
return response
async def async_image_embedding(
self,
model: str,
data: ImageEmbeddingRequest,
timeout: float,
logging_obj,
model_response: litellm.EmbeddingResponse,
optional_params: dict,
api_key: Optional[str],
api_base: Optional[str],
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
) -> EmbeddingResponse:
if client is None or not isinstance(client, AsyncHTTPHandler):
client = AsyncHTTPHandler(timeout=timeout, concurrent_limit=1)
url = "{}/images/embeddings".format(api_base)
response = await client.post(
url=url,
json=data, # type: ignore
headers={"Authorization": "Bearer {}".format(api_key)},
)
embedding_response = response.json()
embedding_headers = dict(response.headers)
returned_response: litellm.EmbeddingResponse = convert_to_model_response_object( # type: ignore
response_object=embedding_response,
model_response_object=model_response,
response_type="embedding",
stream=False,
_response_headers=embedding_headers,
)
return returned_response
def image_embedding(
self,
model: str,
data: ImageEmbeddingRequest,
timeout: float,
logging_obj,
model_response: litellm.EmbeddingResponse,
optional_params: dict,
api_key: Optional[str],
api_base: Optional[str],
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
):
if api_base is None:
raise ValueError(
"api_base is None. Please set AZURE_AI_API_BASE or dynamically via `api_base` param, to make the request."
)
if api_key is None:
raise ValueError(
"api_key is None. Please set AZURE_AI_API_KEY or dynamically via `api_key` param, to make the request."
)
if client is None or not isinstance(client, HTTPHandler):
client = HTTPHandler(timeout=timeout, concurrent_limit=1)
url = "{}/images/embeddings".format(api_base)
response = client.post(
url=url,
json=data, # type: ignore
headers={"Authorization": "Bearer {}".format(api_key)},
)
embedding_response = response.json()
embedding_headers = dict(response.headers)
returned_response: litellm.EmbeddingResponse = convert_to_model_response_object( # type: ignore
response_object=embedding_response,
model_response_object=model_response,
response_type="embedding",
stream=False,
_response_headers=embedding_headers,
)
return returned_response
async def async_embedding(
self,
model: str,
input: List,
timeout: float,
logging_obj,
model_response: litellm.EmbeddingResponse,
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
) -> EmbeddingResponse:
(
image_embeddings_request,
v1_embeddings_request,
image_embeddings_idx,
) = AzureAICohereConfig()._transform_request(
input=input, optional_params=optional_params, model=model
)
image_embedding_responses: Optional[List] = None
text_embedding_responses: Optional[List] = None
if image_embeddings_request["input"]:
image_response = await self.async_image_embedding(
model=model,
data=image_embeddings_request,
timeout=timeout,
logging_obj=logging_obj,
model_response=model_response,
optional_params=optional_params,
api_key=api_key,
api_base=api_base,
client=client,
)
image_embedding_responses = image_response.data
if image_embedding_responses is None:
raise Exception("/image/embeddings route returned None Embeddings.")
if v1_embeddings_request["input"]:
response: EmbeddingResponse = await super().embedding( # type: ignore
model=model,
input=input,
timeout=timeout,
logging_obj=logging_obj,
model_response=model_response,
optional_params=optional_params,
api_key=api_key,
api_base=api_base,
client=client,
aembedding=True,
)
text_embedding_responses = response.data
if text_embedding_responses is None:
raise Exception("/v1/embeddings route returned None Embeddings.")
return self._process_response(
image_embedding_responses=image_embedding_responses,
text_embedding_responses=text_embedding_responses,
image_embeddings_idx=image_embeddings_idx,
model_response=model_response,
input=input,
)
def embedding(
self,
model: str,
input: List,
timeout: float,
logging_obj,
model_response: litellm.EmbeddingResponse,
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
aembedding=None,
):
"""
- Separate image url from text
-> route image url call to `/image/embeddings`
-> route text call to `/v1/embeddings` (OpenAI route)
assemble result in-order, and return
"""
if aembedding is True:
return self.async_embedding(
model,
input,
timeout,
logging_obj,
model_response,
optional_params,
api_key,
api_base,
client,
)
(
image_embeddings_request,
v1_embeddings_request,
image_embeddings_idx,
) = AzureAICohereConfig()._transform_request(
input=input, optional_params=optional_params, model=model
)
image_embedding_responses: Optional[List] = None
text_embedding_responses: Optional[List] = None
if image_embeddings_request["input"]:
image_response = self.image_embedding(
model=model,
data=image_embeddings_request,
timeout=timeout,
logging_obj=logging_obj,
model_response=model_response,
optional_params=optional_params,
api_key=api_key,
api_base=api_base,
client=client,
)
image_embedding_responses = image_response.data
if image_embedding_responses is None:
raise Exception("/image/embeddings route returned None Embeddings.")
if v1_embeddings_request["input"]:
response: EmbeddingResponse = super().embedding( # type: ignore
model,
input,
timeout,
logging_obj,
model_response,
optional_params,
api_key,
api_base,
client=(
client
if client is not None and isinstance(client, OpenAI)
else None
),
aembedding=aembedding,
)
text_embedding_responses = response.data
if text_embedding_responses is None:
raise Exception("/v1/embeddings route returned None Embeddings.")
return self._process_response(
image_embedding_responses=image_embedding_responses,
text_embedding_responses=text_embedding_responses,
image_embeddings_idx=image_embeddings_idx,
model_response=model_response,
input=input,
)