mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
LiteLLM Minor Fixes & Improvements (09/24/2024) (#5880)
* LiteLLM Minor Fixes & Improvements (09/23/2024) (#5842) * feat(auth_utils.py): enable admin to allow client-side credentials to be passed Makes it easier for devs to experiment with finetuned fireworks ai models * feat(router.py): allow setting configurable_clientside_auth_params for a model Closes https://github.com/BerriAI/litellm/issues/5843 * build(model_prices_and_context_window.json): fix anthropic claude-3-5-sonnet max output token limit Fixes https://github.com/BerriAI/litellm/issues/5850 * fix(azure_ai/): support content list for azure ai Fixes https://github.com/BerriAI/litellm/issues/4237 * fix(litellm_logging.py): always set saved_cache_cost Set to 0 by default * fix(fireworks_ai/cost_calculator.py): add fireworks ai default pricing handles calling 405b+ size models * fix(slack_alerting.py): fix error alerting for failed spend tracking Fixes regression with slack alerting error monitoring * fix(vertex_and_google_ai_studio_gemini.py): handle gemini no candidates in streaming chunk error * docs(bedrock.md): add llama3-1 models * test: fix tests * fix(azure_ai/chat): fix transformation for azure ai calls * feat(azure_ai/embed): Add azure ai embeddings support Closes https://github.com/BerriAI/litellm/issues/5861 * fix(azure_ai/embed): enable async embedding * feat(azure_ai/embed): support azure ai multimodal embeddings * fix(azure_ai/embed): support async multi modal embeddings * feat(together_ai/embed): support together ai embedding calls * feat(rerank/main.py): log source documents for rerank endpoints to langfuse improves rerank endpoint logging * fix(langfuse.py): support logging `/audio/speech` input to langfuse * test(test_embedding.py): fix test * test(test_completion_cost.py): fix helper util
This commit is contained in:
parent
5bc5eaff8a
commit
16c0307eab
25 changed files with 1675 additions and 340 deletions
|
@ -8,7 +8,7 @@ from litellm._logging import verbose_logger
|
|||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.llms.azure_ai.rerank import AzureAIRerank
|
||||
from litellm.llms.cohere.rerank import CohereRerank
|
||||
from litellm.llms.togetherai.rerank import TogetherAIRerank
|
||||
from litellm.llms.together_ai.rerank import TogetherAIRerank
|
||||
from litellm.secret_managers.main import get_secret
|
||||
from litellm.types.router import *
|
||||
from litellm.utils import client, exception_type, supports_httpx_timeout
|
||||
|
@ -103,16 +103,14 @@ def rerank(
|
|||
)
|
||||
)
|
||||
|
||||
model_parameters = [
|
||||
"top_n",
|
||||
"rank_fields",
|
||||
"return_documents",
|
||||
"max_chunks_per_doc",
|
||||
]
|
||||
model_params_dict = {}
|
||||
for k, v in optional_params.model_fields.items():
|
||||
if k in model_parameters:
|
||||
model_params_dict[k] = v
|
||||
model_params_dict = {
|
||||
"top_n": top_n,
|
||||
"rank_fields": rank_fields,
|
||||
"return_documents": return_documents,
|
||||
"max_chunks_per_doc": max_chunks_per_doc,
|
||||
"documents": documents,
|
||||
}
|
||||
|
||||
litellm_logging_obj.update_environment_variables(
|
||||
model=model,
|
||||
user=user,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue