mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
[Feat] Allow setting supports_vision
for Custom OpenAI endpoints + Added testing (#5821)
* add test for using images with custom openai endpoints * run all otel tests * update name of test * add custom openai model to test config * add test for setting supports_vision=True for model * fix test guardrails aporia * docs supports vison * fix yaml * fix yaml * docs supports vision * fix bedrock guardrail test * fix cohere rerank test * update model_group doc string * add better prints on test
This commit is contained in:
parent
4069942dd8
commit
1973ae8fb8
10 changed files with 477 additions and 39 deletions
|
@ -404,7 +404,7 @@ jobs:
|
||||||
# Store test results
|
# Store test results
|
||||||
- store_test_results:
|
- store_test_results:
|
||||||
path: test-results
|
path: test-results
|
||||||
proxy_log_to_otel_tests:
|
proxy_logging_guardrails_model_info_tests:
|
||||||
machine:
|
machine:
|
||||||
image: ubuntu-2204:2023.10.1
|
image: ubuntu-2204:2023.10.1
|
||||||
resource_class: xlarge
|
resource_class: xlarge
|
||||||
|
@ -476,6 +476,7 @@ jobs:
|
||||||
-e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
|
-e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
|
||||||
-e AWS_REGION_NAME=$AWS_REGION_NAME \
|
-e AWS_REGION_NAME=$AWS_REGION_NAME \
|
||||||
-e APORIA_API_KEY_1=$APORIA_API_KEY_1 \
|
-e APORIA_API_KEY_1=$APORIA_API_KEY_1 \
|
||||||
|
-e COHERE_API_KEY=$COHERE_API_KEY \
|
||||||
--name my-app \
|
--name my-app \
|
||||||
-v $(pwd)/litellm/proxy/example_config_yaml/otel_test_config.yaml:/app/config.yaml \
|
-v $(pwd)/litellm/proxy/example_config_yaml/otel_test_config.yaml:/app/config.yaml \
|
||||||
-v $(pwd)/litellm/proxy/example_config_yaml/custom_guardrail.py:/app/custom_guardrail.py \
|
-v $(pwd)/litellm/proxy/example_config_yaml/custom_guardrail.py:/app/custom_guardrail.py \
|
||||||
|
@ -503,7 +504,7 @@ jobs:
|
||||||
command: |
|
command: |
|
||||||
pwd
|
pwd
|
||||||
ls
|
ls
|
||||||
python -m pytest -vv tests/otel_tests/test_otel.py -x --junitxml=test-results/junit.xml --durations=5
|
python -m pytest -vv tests/otel_tests -x --junitxml=test-results/junit.xml --durations=5
|
||||||
no_output_timeout: 120m
|
no_output_timeout: 120m
|
||||||
|
|
||||||
# Store test results
|
# Store test results
|
||||||
|
@ -711,7 +712,7 @@ workflows:
|
||||||
only:
|
only:
|
||||||
- main
|
- main
|
||||||
- /litellm_.*/
|
- /litellm_.*/
|
||||||
- proxy_log_to_otel_tests:
|
- proxy_logging_guardrails_model_info_tests:
|
||||||
filters:
|
filters:
|
||||||
branches:
|
branches:
|
||||||
only:
|
only:
|
||||||
|
@ -751,7 +752,7 @@ workflows:
|
||||||
- litellm_assistants_api_testing
|
- litellm_assistants_api_testing
|
||||||
- ui_endpoint_testing
|
- ui_endpoint_testing
|
||||||
- installing_litellm_on_python
|
- installing_litellm_on_python
|
||||||
- proxy_log_to_otel_tests
|
- proxy_logging_guardrails_model_info_tests
|
||||||
- proxy_pass_through_endpoint_tests
|
- proxy_pass_through_endpoint_tests
|
||||||
filters:
|
filters:
|
||||||
branches:
|
branches:
|
||||||
|
|
|
@ -1,8 +1,16 @@
|
||||||
|
import Tabs from '@theme/Tabs';
|
||||||
|
import TabItem from '@theme/TabItem';
|
||||||
|
|
||||||
# Using Vision Models
|
# Using Vision Models
|
||||||
|
|
||||||
## Quick Start
|
## Quick Start
|
||||||
Example passing images to a model
|
Example passing images to a model
|
||||||
|
|
||||||
|
|
||||||
|
<Tabs>
|
||||||
|
|
||||||
|
<TabItem label="LiteLLMPython SDK" value="Python">
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import os
|
import os
|
||||||
from litellm import completion
|
from litellm import completion
|
||||||
|
@ -33,8 +41,80 @@ response = completion(
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
</TabItem>
|
||||||
|
<TabItem label="LiteLLM Proxy Server" value="proxy">
|
||||||
|
|
||||||
|
1. Define vision models on config.yaml
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
model_list:
|
||||||
|
- model_name: gpt-4-vision-preview # OpenAI gpt-4-vision-preview
|
||||||
|
litellm_params:
|
||||||
|
model: openai/gpt-4-vision-preview
|
||||||
|
api_key: os.environ/OPENAI_API_KEY
|
||||||
|
- model_name: llava-hf # Custom OpenAI compatible model
|
||||||
|
litellm_params:
|
||||||
|
model: openai/llava-hf/llava-v1.6-vicuna-7b-hf
|
||||||
|
api_base: http://localhost:8000
|
||||||
|
api_key: fake-key
|
||||||
|
model_info:
|
||||||
|
supports_vision: True # set supports_vision to True so /model/info returns this attribute as True
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Run proxy server
|
||||||
|
|
||||||
|
```bash
|
||||||
|
litellm --config config.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Test it using the OpenAI Python SDK
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
import os
|
||||||
|
from openai import OpenAI
|
||||||
|
|
||||||
|
client = OpenAI(
|
||||||
|
api_key="sk-1234", # your litellm proxy api key
|
||||||
|
)
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model = "gpt-4-vision-preview", # use model="llava-hf" to test your custom OpenAI endpoint
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"text": "What’s in this image?"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
</TabItem>
|
||||||
|
</Tabs>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Checking if a model supports `vision`
|
## Checking if a model supports `vision`
|
||||||
|
|
||||||
|
<Tabs>
|
||||||
|
<TabItem label="LiteLLM Python SDK" value="Python">
|
||||||
|
|
||||||
Use `litellm.supports_vision(model="")` -> returns `True` if model supports `vision` and `False` if not
|
Use `litellm.supports_vision(model="")` -> returns `True` if model supports `vision` and `False` if not
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
@ -42,4 +122,69 @@ assert litellm.supports_vision(model="gpt-4-vision-preview") == True
|
||||||
assert litellm.supports_vision(model="gemini-1.0-pro-vision") == True
|
assert litellm.supports_vision(model="gemini-1.0-pro-vision") == True
|
||||||
assert litellm.supports_vision(model="gpt-3.5-turbo") == False
|
assert litellm.supports_vision(model="gpt-3.5-turbo") == False
|
||||||
```
|
```
|
||||||
|
</TabItem>
|
||||||
|
|
||||||
|
<TabItem label="LiteLLM Proxy Server" value="proxy">
|
||||||
|
|
||||||
|
|
||||||
|
1. Define vision models on config.yaml
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
model_list:
|
||||||
|
- model_name: gpt-4-vision-preview # OpenAI gpt-4-vision-preview
|
||||||
|
litellm_params:
|
||||||
|
model: openai/gpt-4-vision-preview
|
||||||
|
api_key: os.environ/OPENAI_API_KEY
|
||||||
|
- model_name: llava-hf # Custom OpenAI compatible model
|
||||||
|
litellm_params:
|
||||||
|
model: openai/llava-hf/llava-v1.6-vicuna-7b-hf
|
||||||
|
api_base: http://localhost:8000
|
||||||
|
api_key: fake-key
|
||||||
|
model_info:
|
||||||
|
supports_vision: True # set supports_vision to True so /model/info returns this attribute as True
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Run proxy server
|
||||||
|
|
||||||
|
```bash
|
||||||
|
litellm --config config.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Call `/model_group/info` to check if your model supports `vision`
|
||||||
|
|
||||||
|
```shell
|
||||||
|
curl -X 'GET' \
|
||||||
|
'http://localhost:4000/model_group/info' \
|
||||||
|
-H 'accept: application/json' \
|
||||||
|
-H 'x-api-key: sk-1234'
|
||||||
|
```
|
||||||
|
|
||||||
|
Expected Response
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"model_group": "gpt-4-vision-preview",
|
||||||
|
"providers": ["openai"],
|
||||||
|
"max_input_tokens": 128000,
|
||||||
|
"max_output_tokens": 4096,
|
||||||
|
"mode": "chat",
|
||||||
|
"supports_vision": true, # 👈 supports_vision is true
|
||||||
|
"supports_function_calling": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_group": "llava-hf",
|
||||||
|
"providers": ["openai"],
|
||||||
|
"max_input_tokens": null,
|
||||||
|
"max_output_tokens": null,
|
||||||
|
"mode": null,
|
||||||
|
"supports_vision": true, # 👈 supports_vision is true
|
||||||
|
"supports_function_calling": false
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
</TabItem>
|
||||||
|
</Tabs>
|
|
@ -1236,7 +1236,7 @@
|
||||||
},
|
},
|
||||||
"deepseek-chat": {
|
"deepseek-chat": {
|
||||||
"max_tokens": 4096,
|
"max_tokens": 4096,
|
||||||
"max_input_tokens": 32000,
|
"max_input_tokens": 128000,
|
||||||
"max_output_tokens": 4096,
|
"max_output_tokens": 4096,
|
||||||
"input_cost_per_token": 0.00000014,
|
"input_cost_per_token": 0.00000014,
|
||||||
"input_cost_per_token_cache_hit": 0.000000014,
|
"input_cost_per_token_cache_hit": 0.000000014,
|
||||||
|
|
|
@ -15,10 +15,17 @@ model_list:
|
||||||
tags: ["teamB"]
|
tags: ["teamB"]
|
||||||
model_info:
|
model_info:
|
||||||
id: "team-b-model"
|
id: "team-b-model"
|
||||||
- model_name: rerank-english-v3.0 # Fixed indentation here
|
- model_name: rerank-english-v3.0
|
||||||
litellm_params:
|
litellm_params:
|
||||||
model: cohere/rerank-english-v3.0
|
model: cohere/rerank-english-v3.0
|
||||||
api_key: os.environ/COHERE_API_KEY
|
api_key: os.environ/COHERE_API_KEY
|
||||||
|
- model_name: llava-hf
|
||||||
|
litellm_params:
|
||||||
|
model: openai/llava-hf/llava-v1.6-vicuna-7b-hf
|
||||||
|
api_base: http://localhost:8000
|
||||||
|
api_key: fake-key
|
||||||
|
model_info:
|
||||||
|
supports_vision: True
|
||||||
|
|
||||||
|
|
||||||
litellm_settings:
|
litellm_settings:
|
||||||
|
@ -41,7 +48,7 @@ guardrails:
|
||||||
- guardrail_name: "bedrock-pre-guard"
|
- guardrail_name: "bedrock-pre-guard"
|
||||||
litellm_params:
|
litellm_params:
|
||||||
guardrail: bedrock # supported values: "aporia", "bedrock", "lakera"
|
guardrail: bedrock # supported values: "aporia", "bedrock", "lakera"
|
||||||
mode: "pre_call"
|
mode: "during_call"
|
||||||
guardrailIdentifier: ff6ujrregl1q
|
guardrailIdentifier: ff6ujrregl1q
|
||||||
guardrailVersion: "DRAFT"
|
guardrailVersion: "DRAFT"
|
||||||
- guardrail_name: "custom-pre-guard"
|
- guardrail_name: "custom-pre-guard"
|
||||||
|
@ -55,4 +62,7 @@ guardrails:
|
||||||
- guardrail_name: "custom-post-guard"
|
- guardrail_name: "custom-post-guard"
|
||||||
litellm_params:
|
litellm_params:
|
||||||
guardrail: custom_guardrail.myCustomGuardrail
|
guardrail: custom_guardrail.myCustomGuardrail
|
||||||
mode: "post_call"
|
mode: "post_call"
|
||||||
|
|
||||||
|
router_settings:
|
||||||
|
enable_tag_filtering: True # 👈 Key Change
|
|
@ -1,32 +1,57 @@
|
||||||
model_list:
|
model_list:
|
||||||
- model_name: gemini-vision
|
- model_name: gpt-3.5-turbo
|
||||||
litellm_params:
|
litellm_params:
|
||||||
model: vertex_ai/gemini-1.5-pro
|
model: openai/gpt-3.5-turbo
|
||||||
api_base: https://exampleopenaiendpoint-production.up.railway.app/v1/projects/adroit-crow-413218/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision-001
|
api_key: fake-key
|
||||||
vertex_project: "adroit-crow-413218"
|
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||||
vertex_location: "us-central1"
|
tags: ["teamB"]
|
||||||
vertex_credentials: "/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json"
|
model_info:
|
||||||
- model_name: gemini-vision
|
id: "team-b-model"
|
||||||
litellm_params:
|
- model_name: rerank-english-v3.0
|
||||||
model: vertex_ai/gemini-1.0-pro-vision-001
|
litellm_params:
|
||||||
api_base: https://exampleopenaiendpoint-production-c715.up.railway.app/v1/projects/adroit-crow-413218/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision-001
|
model: cohere/rerank-english-v3.0
|
||||||
vertex_project: "adroit-crow-413218"
|
api_key: os.environ/COHERE_API_KEY
|
||||||
vertex_location: "us-central1"
|
- model_name: llava-hf
|
||||||
vertex_credentials: "/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json"
|
litellm_params:
|
||||||
|
model: openai/llava-hf/llava-v1.6-vicuna-7b-hf
|
||||||
|
api_base: http://localhost:8000
|
||||||
|
api_key: fake-key
|
||||||
|
model_info:
|
||||||
|
supports_vision: True
|
||||||
|
|
||||||
- model_name: fake-azure-endpoint
|
|
||||||
litellm_params:
|
|
||||||
model: openai/429
|
|
||||||
api_key: fake-key
|
|
||||||
api_base: https://exampleopenaiendpoint-production.up.railway.app
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
general_settings:
|
|
||||||
master_key: sk-1234
|
|
||||||
default_team_disabled: true
|
|
||||||
custom_sso: custom_sso.custom_sso_handler
|
|
||||||
|
|
||||||
litellm_settings:
|
litellm_settings:
|
||||||
success_callback: ["prometheus"]
|
cache: true
|
||||||
|
# callbacks: ["otel"]
|
||||||
|
|
||||||
|
guardrails:
|
||||||
|
- guardrail_name: "aporia-pre-guard"
|
||||||
|
litellm_params:
|
||||||
|
guardrail: aporia # supported values: "aporia", "bedrock", "lakera"
|
||||||
|
mode: "post_call"
|
||||||
|
api_key: os.environ/APORIA_API_KEY_1
|
||||||
|
api_base: os.environ/APORIA_API_BASE_1
|
||||||
|
- guardrail_name: "aporia-post-guard"
|
||||||
|
litellm_params:
|
||||||
|
guardrail: aporia # supported values: "aporia", "bedrock", "lakera"
|
||||||
|
mode: "post_call"
|
||||||
|
api_key: os.environ/APORIA_API_KEY_2
|
||||||
|
api_base: os.environ/APORIA_API_BASE_2
|
||||||
|
- guardrail_name: "bedrock-pre-guard"
|
||||||
|
litellm_params:
|
||||||
|
guardrail: bedrock # supported values: "aporia", "bedrock", "lakera"
|
||||||
|
mode: "during_call"
|
||||||
|
guardrailIdentifier: ff6ujrregl1q
|
||||||
|
guardrailVersion: "DRAFT"
|
||||||
|
- guardrail_name: "custom-pre-guard"
|
||||||
|
litellm_params:
|
||||||
|
guardrail: custom_guardrail.myCustomGuardrail
|
||||||
|
mode: "pre_call"
|
||||||
|
- guardrail_name: "custom-during-guard"
|
||||||
|
litellm_params:
|
||||||
|
guardrail: custom_guardrail.myCustomGuardrail
|
||||||
|
mode: "during_call"
|
||||||
|
- guardrail_name: "custom-post-guard"
|
||||||
|
litellm_params:
|
||||||
|
guardrail: custom_guardrail.myCustomGuardrail
|
||||||
|
mode: "post_call"
|
|
@ -7595,7 +7595,6 @@ async def model_info_v1(
|
||||||
|
|
||||||
@router.get(
|
@router.get(
|
||||||
"/model_group/info",
|
"/model_group/info",
|
||||||
description="Provides more info about each model in /models, including config.yaml descriptions (except api key and api base)",
|
|
||||||
tags=["model management"],
|
tags=["model management"],
|
||||||
dependencies=[Depends(user_api_key_auth)],
|
dependencies=[Depends(user_api_key_auth)],
|
||||||
)
|
)
|
||||||
|
@ -7603,7 +7602,134 @@ async def model_group_info(
|
||||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Returns model info at the model group level.
|
Get information about all the deployments on litellm proxy, including config.yaml descriptions (except api key and api base)
|
||||||
|
|
||||||
|
- /models returns all deployments. Proxy Admins can use this to list all deployments setup on the proxy
|
||||||
|
- /model_group/info returns all model groups. End users of proxy should use /model_group/info since those models will be used for /chat/completions, /embeddings, etc.
|
||||||
|
|
||||||
|
|
||||||
|
```shell
|
||||||
|
curl -X 'GET' \
|
||||||
|
'http://localhost:4000/model_group/info' \
|
||||||
|
-H 'accept: application/json' \
|
||||||
|
-H 'x-api-key: sk-1234'
|
||||||
|
```
|
||||||
|
|
||||||
|
Example Response:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"model_group": "rerank-english-v3.0",
|
||||||
|
"providers": [
|
||||||
|
"cohere"
|
||||||
|
],
|
||||||
|
"max_input_tokens": null,
|
||||||
|
"max_output_tokens": null,
|
||||||
|
"input_cost_per_token": 0.0,
|
||||||
|
"output_cost_per_token": 0.0,
|
||||||
|
"mode": null,
|
||||||
|
"tpm": null,
|
||||||
|
"rpm": null,
|
||||||
|
"supports_parallel_function_calling": false,
|
||||||
|
"supports_vision": false,
|
||||||
|
"supports_function_calling": false,
|
||||||
|
"supported_openai_params": [
|
||||||
|
"stream",
|
||||||
|
"temperature",
|
||||||
|
"max_tokens",
|
||||||
|
"logit_bias",
|
||||||
|
"top_p",
|
||||||
|
"frequency_penalty",
|
||||||
|
"presence_penalty",
|
||||||
|
"stop",
|
||||||
|
"n",
|
||||||
|
"extra_headers"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_group": "gpt-3.5-turbo",
|
||||||
|
"providers": [
|
||||||
|
"openai"
|
||||||
|
],
|
||||||
|
"max_input_tokens": 16385.0,
|
||||||
|
"max_output_tokens": 4096.0,
|
||||||
|
"input_cost_per_token": 1.5e-06,
|
||||||
|
"output_cost_per_token": 2e-06,
|
||||||
|
"mode": "chat",
|
||||||
|
"tpm": null,
|
||||||
|
"rpm": null,
|
||||||
|
"supports_parallel_function_calling": false,
|
||||||
|
"supports_vision": false,
|
||||||
|
"supports_function_calling": true,
|
||||||
|
"supported_openai_params": [
|
||||||
|
"frequency_penalty",
|
||||||
|
"logit_bias",
|
||||||
|
"logprobs",
|
||||||
|
"top_logprobs",
|
||||||
|
"max_tokens",
|
||||||
|
"max_completion_tokens",
|
||||||
|
"n",
|
||||||
|
"presence_penalty",
|
||||||
|
"seed",
|
||||||
|
"stop",
|
||||||
|
"stream",
|
||||||
|
"stream_options",
|
||||||
|
"temperature",
|
||||||
|
"top_p",
|
||||||
|
"tools",
|
||||||
|
"tool_choice",
|
||||||
|
"function_call",
|
||||||
|
"functions",
|
||||||
|
"max_retries",
|
||||||
|
"extra_headers",
|
||||||
|
"parallel_tool_calls",
|
||||||
|
"response_format"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_group": "llava-hf",
|
||||||
|
"providers": [
|
||||||
|
"openai"
|
||||||
|
],
|
||||||
|
"max_input_tokens": null,
|
||||||
|
"max_output_tokens": null,
|
||||||
|
"input_cost_per_token": 0.0,
|
||||||
|
"output_cost_per_token": 0.0,
|
||||||
|
"mode": null,
|
||||||
|
"tpm": null,
|
||||||
|
"rpm": null,
|
||||||
|
"supports_parallel_function_calling": false,
|
||||||
|
"supports_vision": true,
|
||||||
|
"supports_function_calling": false,
|
||||||
|
"supported_openai_params": [
|
||||||
|
"frequency_penalty",
|
||||||
|
"logit_bias",
|
||||||
|
"logprobs",
|
||||||
|
"top_logprobs",
|
||||||
|
"max_tokens",
|
||||||
|
"max_completion_tokens",
|
||||||
|
"n",
|
||||||
|
"presence_penalty",
|
||||||
|
"seed",
|
||||||
|
"stop",
|
||||||
|
"stream",
|
||||||
|
"stream_options",
|
||||||
|
"temperature",
|
||||||
|
"top_p",
|
||||||
|
"tools",
|
||||||
|
"tool_choice",
|
||||||
|
"function_call",
|
||||||
|
"functions",
|
||||||
|
"max_retries",
|
||||||
|
"extra_headers",
|
||||||
|
"parallel_tool_calls",
|
||||||
|
"response_format"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
"""
|
"""
|
||||||
global llm_model_list, general_settings, user_config_file_path, proxy_config, llm_router
|
global llm_model_list, general_settings, user_config_file_path, proxy_config, llm_router
|
||||||
|
|
||||||
|
|
94
tests/llm_translation/test_supports_vision.py
Normal file
94
tests/llm_translation/test_supports_vision.py
Normal file
|
@ -0,0 +1,94 @@
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from datetime import datetime
|
||||||
|
from unittest.mock import AsyncMock
|
||||||
|
|
||||||
|
sys.path.insert(
|
||||||
|
0, os.path.abspath("../..")
|
||||||
|
) # Adds the parent directory to the system path
|
||||||
|
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
import pytest
|
||||||
|
from respx import MockRouter
|
||||||
|
|
||||||
|
import litellm
|
||||||
|
from litellm import Choices, Message, ModelResponse
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio()
|
||||||
|
@pytest.mark.respx
|
||||||
|
async def test_vision_with_custom_model(respx_mock: MockRouter):
|
||||||
|
"""
|
||||||
|
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
|
||||||
|
|
||||||
|
"""
|
||||||
|
import base64
|
||||||
|
import requests
|
||||||
|
|
||||||
|
litellm.set_verbose = True
|
||||||
|
api_base = "https://my-custom.api.openai.com"
|
||||||
|
|
||||||
|
# Fetch and encode a test image
|
||||||
|
url = "https://dummyimage.com/100/100/fff&text=Test+image"
|
||||||
|
response = requests.get(url)
|
||||||
|
file_data = response.content
|
||||||
|
encoded_file = base64.b64encode(file_data).decode("utf-8")
|
||||||
|
base64_image = f"data:image/png;base64,{encoded_file}"
|
||||||
|
|
||||||
|
mock_response = ModelResponse(
|
||||||
|
id="cmpl-mock",
|
||||||
|
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
|
||||||
|
created=int(datetime.now().timestamp()),
|
||||||
|
model="my-custom-model",
|
||||||
|
)
|
||||||
|
|
||||||
|
mock_request = respx_mock.post(f"{api_base}/chat/completions").mock(
|
||||||
|
return_value=httpx.Response(200, json=mock_response.dict())
|
||||||
|
)
|
||||||
|
|
||||||
|
response = await litellm.acompletion(
|
||||||
|
model="openai/my-custom-model",
|
||||||
|
max_tokens=10,
|
||||||
|
api_base=api_base, # use the mock api
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "text", "text": "What's in this image?"},
|
||||||
|
{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {"url": base64_image},
|
||||||
|
},
|
||||||
|
],
|
||||||
|
}
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
assert mock_request.called
|
||||||
|
request_body = json.loads(mock_request.calls[0].request.content)
|
||||||
|
|
||||||
|
print("request_body: ", request_body)
|
||||||
|
|
||||||
|
assert request_body == {
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "text", "text": "What's in this image?"},
|
||||||
|
{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": ""
|
||||||
|
},
|
||||||
|
},
|
||||||
|
],
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"model": "my-custom-model",
|
||||||
|
"max_tokens": 10,
|
||||||
|
}
|
||||||
|
|
||||||
|
print(f"response: {response}")
|
||||||
|
assert isinstance(response, ModelResponse)
|
|
@ -70,6 +70,7 @@ async def generate_key(session, guardrails):
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
|
@pytest.mark.skip(reason="Aporia account disabled")
|
||||||
async def test_llm_guard_triggered_safe_request():
|
async def test_llm_guard_triggered_safe_request():
|
||||||
"""
|
"""
|
||||||
- Tests a request where no content mod is triggered
|
- Tests a request where no content mod is triggered
|
||||||
|
@ -99,6 +100,7 @@ async def test_llm_guard_triggered_safe_request():
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
|
@pytest.mark.skip(reason="Aporia account disabled")
|
||||||
async def test_llm_guard_triggered():
|
async def test_llm_guard_triggered():
|
||||||
"""
|
"""
|
||||||
- Tests a request where no content mod is triggered
|
- Tests a request where no content mod is triggered
|
||||||
|
@ -146,6 +148,7 @@ async def test_no_llm_guard_triggered():
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
|
@pytest.mark.skip(reason="Aporia account disabled")
|
||||||
async def test_guardrails_with_api_key_controls():
|
async def test_guardrails_with_api_key_controls():
|
||||||
"""
|
"""
|
||||||
- Make two API Keys
|
- Make two API Keys
|
||||||
|
|
28
tests/otel_tests/test_model_info.py
Normal file
28
tests/otel_tests/test_model_info.py
Normal file
|
@ -0,0 +1,28 @@
|
||||||
|
"""
|
||||||
|
/model/info test
|
||||||
|
"""
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio()
|
||||||
|
async def test_custom_model_supports_vision():
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
|
response = await client.get(
|
||||||
|
"http://localhost:4000/model/info",
|
||||||
|
headers={"Authorization": "Bearer sk-1234"},
|
||||||
|
)
|
||||||
|
assert response.status_code == 200
|
||||||
|
|
||||||
|
data = response.json()["data"]
|
||||||
|
|
||||||
|
print("response from /model/info", data)
|
||||||
|
llava_model = next(
|
||||||
|
(model for model in data if model["model_name"] == "llava-hf"), None
|
||||||
|
)
|
||||||
|
|
||||||
|
assert llava_model is not None, "llava-hf model not found in response"
|
||||||
|
assert (
|
||||||
|
llava_model["model_info"]["supports_vision"] == True
|
||||||
|
), "llava-hf model should support vision"
|
|
@ -18,6 +18,7 @@ async def chat_completion(
|
||||||
"Authorization": f"Bearer {key}",
|
"Authorization": f"Bearer {key}",
|
||||||
"Content-Type": "application/json",
|
"Content-Type": "application/json",
|
||||||
}
|
}
|
||||||
|
print("headers=", headers)
|
||||||
data = {
|
data = {
|
||||||
"model": model,
|
"model": model,
|
||||||
"messages": [
|
"messages": [
|
||||||
|
@ -96,16 +97,21 @@ async def test_team_tag_routing():
|
||||||
async with aiohttp.ClientSession() as session:
|
async with aiohttp.ClientSession() as session:
|
||||||
key = LITELLM_MASTER_KEY
|
key = LITELLM_MASTER_KEY
|
||||||
team_a_data = await create_team_with_tags(session, key, ["teamA"])
|
team_a_data = await create_team_with_tags(session, key, ["teamA"])
|
||||||
|
print("team_a_data=", team_a_data)
|
||||||
team_a_id = team_a_data["team_id"]
|
team_a_id = team_a_data["team_id"]
|
||||||
|
|
||||||
team_b_data = await create_team_with_tags(session, key, ["teamB"])
|
team_b_data = await create_team_with_tags(session, key, ["teamB"])
|
||||||
|
print("team_b_data=", team_b_data)
|
||||||
team_b_id = team_b_data["team_id"]
|
team_b_id = team_b_data["team_id"]
|
||||||
|
|
||||||
key_with_team_a = await create_key_with_team(session, key, team_a_id)
|
key_with_team_a = await create_key_with_team(session, key, team_a_id)
|
||||||
print(key_with_team_a)
|
print("key_with_team_a=", key_with_team_a)
|
||||||
_key_with_team_a = key_with_team_a["key"]
|
_key_with_team_a = key_with_team_a["key"]
|
||||||
for _ in range(5):
|
for _ in range(5):
|
||||||
response_a, headers = await chat_completion(session, _key_with_team_a)
|
response_a, headers = await chat_completion(
|
||||||
|
session=session, key=_key_with_team_a
|
||||||
|
)
|
||||||
|
|
||||||
headers = dict(headers)
|
headers = dict(headers)
|
||||||
print(response_a)
|
print(response_a)
|
||||||
print(headers)
|
print(headers)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue